A Receding Horizon Approach for the Runtime Management of IaaS Cloud Systems

Danilo Ardagna, Michele Ciavotta
{danilo.ardagna, michele.ciavotta}@polimi.it
Politecnico di Milano
Riccardo Lancellotti
riccardo.lancellotti@unimore.it
Università di Modena e Reggio Emilia

www.modaclouds.eu
Introduction

Problem
- Problem statement and design assumption
- Receding Horizon algorithm

Experimental Analysis

Conclusions
The advent of Cloud Computing changed dramatically the ICT industry

- Google, Amazon, Microsoft, Salesforce, Oracle, SAP, SoftLayer, Rackspace etc...
- Cost-effective solutions
- Computational power
- Reliability
- Auto-scaling

New business paradigms appeared on the market

- IaaS, PaaS, SaaS
- But also DaaS, BDaaS, HDaaS, etc...
The growing popularity of Cloud Computing opens new challenges

- Vendor lock-in
- Design for Quality of Service (QoS) guarantees
- Managing the lifecycle of a Cloud application

- Managing Elasticity
 - Resource Provisioning
 - Self-adaptation
Resource Provisioning: mechanism for leasing and releasing virtual cloud resources to guarantee adequate QoS

... it requires management solutions that support

* Performance prediction,
* Monitoring of Service Level Agreements (SLA),
* Adaptive re-configuration actions.

Tools currently supplied by IaaS providers, are often too basic and inadequate for

* Highly variable workload,
* Applications with a dynamic behavior characterized by uncertainty.
Proposal: a fast and effective Capacity Allocation technique

- based on the Receding Horizon control strategy
- integrated within MODAClouds runtime platform
- that minimizes the execution costs of a Cloud application,
- guaranteeing QoS constraints expressed in terms of average response time
Introduction

Problem
- Problem statement and design assumption
- Receding Horizon algorithm

Experimental Analysis

Conclusions
Perspective of a **Software-as-a-Service (SaaS)** provider hosting his/her applications on an **Infrastructure-as-a-Service (IaaS)** provider

Applications are single **tier** hosted in virtual machines (VMs) that are dynamically instantiated by the IaaS provider

Each VM hosts a single **WS application**

Multiple **homogeneous** VMs implementing the same WS application can run in parallel
Problem: design assumptions

Each **WS class** hosted in a VM is modeled as an **M/G/1 queue** in tandem with a delay center.

SLA based on the average response time R_k: every WS class has to provide a response time lower than a threshold.
IaaS providers charge software providers on an hourly basis

- reserved VMs (\(\rho \) time-unit cost)
- on demand VMs (\(\delta \) time-unit cost \(\rho < \delta \))

Time management:

- Time slots: \(T_{slot} \) (5, 10 min)
- Time window: \(T_w \) (1-5 \(T_{slot} \))
- Charging interval: \(T_c \) (60 min)
Problem: formulation

System parameters

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>\mathcal{K}</td>
<td>Set of WS applications</td>
</tr>
<tr>
<td>δ</td>
<td>Time unit cost (measured in dollars) for on-demand VMs</td>
</tr>
<tr>
<td>ρ</td>
<td>Time unit cost (measured in dollars) for reserved VMs</td>
</tr>
<tr>
<td>T_w</td>
<td>Set of time slots within the sliding time window</td>
</tr>
<tr>
<td>T_c</td>
<td>Set of time slots within a charging interval</td>
</tr>
<tr>
<td>T_{slot}</td>
<td>Short-term CA time slot, measured in minutes</td>
</tr>
<tr>
<td>n_c</td>
<td>Number of time slots within the charging interval T_c</td>
</tr>
<tr>
<td>n_w</td>
<td>Number of time slots within the time window T_w</td>
</tr>
<tr>
<td>\bar{r}^t_k</td>
<td>Number of reserved VMs freely available at time slot t in the interval under analysis, for request class k</td>
</tr>
<tr>
<td>\bar{d}^t_k</td>
<td>Number of on-demand VMs available for free at time slot t in the interval under analysis, for request class k</td>
</tr>
<tr>
<td>Λ^t_k</td>
<td>Real local arrival rate (measured in requests/sec) for request class k, at time slot t</td>
</tr>
<tr>
<td>$\Lambda_{\text{pred}}^t_k$</td>
<td>Local arrival rate prediction (measured in requests/sec) for request class k, at time slot t</td>
</tr>
<tr>
<td>R_k</td>
<td>Average response time threshold for request class k</td>
</tr>
<tr>
<td>W</td>
<td>Maximum number of reserved instances available</td>
</tr>
</tbody>
</table>

Decision Variables

<table>
<thead>
<tr>
<th>Variable</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>d^t_k</td>
<td>Number of on-demand VMs to be allocated for request class k at time slot t</td>
</tr>
<tr>
<td>r^t_k</td>
<td>Number of reserved VMs to be allocated for request class k at time slot t</td>
</tr>
</tbody>
</table>
The CA problem can be formulated as:

\[
(P) \quad \min_{r_k^t, d_k^t \in K} \sum_{k \in K} \left(\rho \sum_{t=1}^{n_w} r_k^t + \delta \sum_{t=1}^{n_w} d_k^t \right)
\]

Subject to the conditions:

\[
R_k(r_k^1, \bar{r}_k^1, \ldots, r_k^t, \bar{r}_k^t, d_k^1, \bar{d}_k^1, \ldots, d_k^t, \bar{d}_k^t, \hat{\Lambda}_k^1, \ldots, \hat{\Lambda}_k^t) \leq R_k
\]

\[
\forall k \in K, \forall t \in T_w
\]

\[
\sum_{k \in K} (r_k^t + \bar{r}_k^t) \leq W, \forall t \in T_w
\]

\[
\forall k \in K, \forall t \in T_w
\]

\[
r_k^t \geq 0, \quad r_k^t \in \mathbb{N}
\]

\[
d_k^t \geq 0, \quad d_k^t \in \mathbb{N}
\]
In a nutshell, the Capacity Allocation problem is solved for every time slot in but only the actions concerning the first forthcoming time slot are enacted.
Algorithm 1 Receding Horizon Algorithm

1: procedure SOLUTION ALGORITHM
2: for all $k \in \mathcal{K}$ do
3: for $w \leftarrow 1, n_w$ do
4: $\hat{\Lambda}_w^k \leftarrow \text{GetPrediction} (w, k)$
5: $\bar{r}_w^k \leftarrow N_{\text{res},k}^{t+w}$
6: $\bar{d}_w^k \leftarrow N_{\text{ond},k}^{t+w}$
7: end for
8: end for
9: Solve $(P, \bar{r}, \bar{d}, \hat{\Lambda})$\text{ \textbf{\rightarrow}}
10: for all $k \in \mathcal{K}$ do
11: Scale (k, r^{1}_k, d^{1}_k)\text{ \textbf{\rightarrow}}
12: for $j \leftarrow 1, n_c$ do
13: $N_{\text{res},k}^{t+j} \leftarrow N_{\text{res},k}^{t+j} + r^{1}_k$
14: $N_{\text{ond},k}^{t+j} \leftarrow N_{\text{ond},k}^{t+j} + d^{1}_k$
15: end for
16: end for
17: end procedure

- **Initialization**
- **Solving the current model**
- **Applying the changes according to the first time slot decisions**
- **State update**
Agenda

* Introduction

* Problem
 * Problem statement and design assumption
 * Receding Horizon algorithm

* Experimental Analysis

* Conclusions
Experimental Analysis

Scalability:
- Large set of randomly generated instances
- Daily distribution of requests from real log traces

Comparison with state of the art approaches:
- Heuristic
- Oracle with perfect knowledge of the future

Time scale analysis:
- SLA violations
Workload prediction

* Incoming workload has been obtained for traces of a very large dynamic web-based system
* Different workload for each WS class
* Prediction obtained by adding white noise to each sample
* Noise proportional to the arrival rate
* Inaccuracy increases with the time slot

Performance parameters

* Service rate \(\mu_k \in [200, 400] \text{ req/sec} \)
* Queueing delay \(D_k \in [0.001, 0.05] \text{ s} \)
* Reserved instances \(W = 10 \)

Instance cost

* Randomly generated considering prices currently charged by common IaaS providers
Traffic profiles:
- Normal workload with low noise
- Normal workload with high noise
- Spiky workload with low noise
- Spiky workload with high noise

The different levels of noise corresponds to:

Experiment Design
Scalability

The analysis demonstrated that our approach scales almost linearly with respect to the number of request classes. Systems up to 160 classes and 5 time slots can be solved in less than 200 sec.
Cost – Normal traffic

10 minutes time scale
Low noise level

Costs comparison

<table>
<thead>
<tr>
<th>Solution</th>
<th>τ_w</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Oracle</td>
<td>0.00%</td>
</tr>
<tr>
<td>S-t Algorithm</td>
<td>2.00%</td>
</tr>
<tr>
<td>Heu (40%, 50%)</td>
<td>95.81%</td>
</tr>
<tr>
<td>Heu (50%, 60%)</td>
<td>95.09%</td>
</tr>
<tr>
<td>Heu (60%, 80%)</td>
<td>52.39%</td>
</tr>
</tbody>
</table>
Cost – Spiky traffic

5 minutes time scale
Low noise level

Costs comparison

<table>
<thead>
<tr>
<th>Solution</th>
<th>(\mathcal{T}_w)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1</td>
</tr>
<tr>
<td>Oracle</td>
<td>0.00%</td>
</tr>
<tr>
<td>S-t Algorithm</td>
<td>5.10%</td>
</tr>
<tr>
<td>Heu (40%, 50%)</td>
<td>175.37%</td>
</tr>
<tr>
<td>Heu (50%, 60%)</td>
<td>197.36%</td>
</tr>
<tr>
<td>Heu (60%, 80%)</td>
<td>138.10%</td>
</tr>
</tbody>
</table>
Goal: evaluate the impact of time scale on the proposed receding horizon algorithm. Analyses have been supported by a discrete event simulator based on the Omnet++ framework created on purpose.

- Able to capture the time-varying performance degradation due to resource contention via Random Environments (REs)

Performance indicators considered:

- SLA violation (the percentage of time slots where the average response time exceeds the SLA thresholds)
- Dropped request (the percentage of requests dropped as a result of the finite queue length)
Time scale analysis

<table>
<thead>
<tr>
<th>τ_w</th>
<th>SLA Violations [%]</th>
<th>Dropped Requests [%]</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>5 min</td>
<td>10 min</td>
</tr>
<tr>
<td>1</td>
<td>0.49</td>
<td>1.74</td>
</tr>
<tr>
<td>2</td>
<td>1.08</td>
<td>0.56</td>
</tr>
<tr>
<td>3</td>
<td>0.90</td>
<td>1.81</td>
</tr>
<tr>
<td>4</td>
<td>1.15</td>
<td>1.88</td>
</tr>
</tbody>
</table>

The values are related to a 24 hours analysis with low noise and averaged over 10 executions.

A control time granularity of 5 minutes tends to provide better performance if compared to granularity of 10 minutes both in terms of SLA violations and in terms of dropped requests.
We proposed optimization approach to achieve fast, scalable and effective capacity allocation based on a fine grained time scale.

Our technique is able to minimize costs in a more efficient way than the current state of the art.

The QoS defined into the SLA is almost always respected (less than 2% and 7 min).

Future works:
- development of an adaptive approach able to switch between different time scales according to the workload conditions.
- Test on a real prototype environment.
Thank You!

Questions