
Peer-to-peer Architecture for

Collaborative Intrusion and Malware Detection

on a Large Scale

Mirco Marchetti, Michele Messori, and Michele Colajanni

Department of Information Engineering
University of Modena and Reggio Emilia

{mirco.marchetti, michele.messori, michele.colajanni}@unimore.it

Abstract. The complexity of modern network architectures and the epi-
demic diffusion of malware require collaborative approaches for defense.
We present a novel distributed system where each component collabo-
rates to the intrusion and malware detection and to the dissemination of
the local analyses. The proposed architecture is based on a decentralized,
peer-to-peer and sensor-agnostic design that addresses dependability and
load unbalance issues affecting existing systems based on centralized and
hierarchical schemes. Load balancing properties, ability to tolerate churn,
self-organization capabilities and scalability are demonstrated through a
prototype integrating different open source defensive software.

1 Introduction

Distributed and collaborative systems are emerging as the most valid solutions to
face modern threats coming from multiple sources. To identify network intrusions
and new malware as soon as possible, hierarchical architectures for intrusion
detection have been proposed, such as [1]. They are able to gather information
from a wide network space and allow early detection of emerging threats because
they are based on multiple sensors placed in different network segments and on a
hierarchical collaboration scheme. This approach allows administrators to deploy
timely countermeasures because all the network segments hosting at least one
sensor can be alerted about new threats as soon as they are detected in any part
of the collaborative system.

The problems affecting existing collaborative solutions based on hierarchical
or centralized architectures are well known: peer dependability issues, limited
scalability and load unbalance. We present a distributed collaborative architec-
ture that aims to address these main issues through a cooperative peer-to-peer
scheme based on a Distributed Hash Table (DHT).

The peer-to-peer architecture proposed in this paper aims to capture and
analyze real malware specimens and propose countermeasures instead of just
recognizing that a malware is spreading. Moreover, it disseminates network ac-
tivity reports on the basis of a behavioral analysis of the captured payload, thus
being able to provide a description of the malware behavior. The communication



model is different from existing systems because it adopts a publish/subscribe
scheme as an option for the distribution of the result of the analysis, while each
alert is inserted into an ad-hoc message persistently stored in PAST [14]. This
solution guarantees privacy and availability of the information. Other proposals
based on peer-to-peer defensive schemes (e.g., [22, 23]) differ from this paper
because their focus is on novel algorithms for anomaly detection that should
be facilitated by cooperation. On the other hand, our focus is on the software
architecture that is flexible enough to work with different algorithms.

Other peer-to-peer schemes (e.g., [24,25,28]) are used to disseminate informa-
tion about malicious IP addresses through some publish/subscribe model. Our
architecture uses a publish/subscribe scheme only for the communication of the
analysis results, while events are persistently stored and can be retrieved succes-
sively. Other proposals have some peculiarity that is not addressed in this paper.
For example, DOMINO [25] is an interesting architecture because its overlay net-
work combines peer-to-peer and hierarchical components and uses Chord [26] to
distribute alert information. The main goal of Worminator [27] is to guarantee a
high level of privacy of the shared information. It extracts relevant information
from alert streams and encodes it in Bloom Filters. This information forms the
basis of a distributed watchlist and includes IP addresses and ports. The watch-
list can be distributed through various mechanisms, ranging from a centralized
trusted third party to a decentralized peer-to-peer overlay network. However,
we should be aware that the main goal of these architectures is to compile an
updated blacklist of the IP addresses at the origin of some attacks. On the other
hand, this paper has a broader scope: our architecture manages IP addresses
and other important information, such as binary code of malware, signature of
IDS and malware behavior. Moreover, our architecture is sensor agnostic, and
is able to support heterogeneous algorithms and techniques for intrusion detec-
tion and malware analysis. For these reasons, it differs from Indra [28] that is a
distributed intrusion detection architecture that relies on custom sensors.

This paper is organized as follows. Section 2 describes the design of the
proposed architecture. Section 3 highlights its main benefits with respect to
hierarchical and centralized architectures. Section 4 details the main features
of the prototype that is based on open source software. Section 5 reports the
experimental results achieved through the prototype. Scalability, load balanc-
ing, robustness and self-organization properties at a larger scale with thousands
of collaborative nodes are demonstrated through simulation. Section 6 outlines
main conclusions and future work.

2 Architecture Design

The main goal of this paper is to design a distributed architecture where each
component collaborates to the intrusion and malware detection and to the dis-
semination of the local analyses including:

– malware behavior,
– malware diffusion,



– network-based attacks,
– diffusion of intrusions,
– identification of suspicious IP addresses,
– identification of the servers from which the malware is downloaded.

The novel architecture should address the main issues of hierarchical collabora-
tive schemes in order to guarantee high scalability, fault tolerance, dependability
and self-organization.

To accomplish these goals we propose a flat distributed architecture com-
posed by several cooperating nodes that communicate through a DHT overlay
network. An overview of this architecture is shown in Figure 1. Each node,
called collaborative alert agregator, accomplishes the same high level functions:
generation of local security alerts, forwarding of relevant alerts to the other
collaborative nodes, analysis of received events and communications of the anal-
ysis results. All the communications among the collaborative alert agregators
are carried out through a peer-to-peer overlay providing a fully connected mesh
network. This solution does not require centralized coordination nor supernodes.

Fig. 1. Node connections to the DHT

The design of a collaborative alert agregator is represented in Figure 2. It
is possible to identify three layers: the sensor layer, the local aggregation layer,
and the collaboration layer. Each layer is described in the following sections.

2.1 Sensor Layer

The sensor layer provides a node with intrusion detection alerts and malware
samples. It consists of one or multiple types of sensors. For example, the current
version relies on four classes of sensors.



Fig. 2. Design of a collaborative alert aggregator

– Host IDS. Intrusion detection system monitoring activities on the same
host in which they are deployed.

– Network IDS. Sensors placed in strategic positions in order to capture all
network traffic and to analyze each packet looking for malicious content.
They can be implemented through custom hardware appliances or installed
on a general purpose computer. When illicit activities are detected, they
generate an alert containing information on malicious network packets (such
as a TCP/IP header and a signature identifier) and a description of the
attack.

– Honeypot. These tools are able to collect malware and to trace malicious
activities. They consist of server processes hosted on a vulnerable computer
connected to a network. As an honeypot does not provide any useful service,
any attempt of reaching it and logging into its services can be considered an
attack.

– Sensor manager. This class of sensors represents a component of a multi-
tier, hierarchical NIDS architecture. A sensor manager forwards information
to other managers belonging to upper tiers. It can also aggregate and fil-
ter data, thus reducing the number of forwarded alerts and decreasing the
network traffic and the computational load of the other components of the
hierarchical architecture.

It is not necessary to install the sensors on the same physical machine hosting
the local aggregation and the collaboration layers. Sensors can interface with
alert collectors installed on remote hosts.

2.2 Local Aggregation Layer

The local aggregation layer is responsible for collecting, filtering and aggregating
all the heterogeneous alerts received from the sensors of the lower layer. While it



is possible for the alert collector to execute arbitrarily complex aggregation and
correlation algorithms, its fundamental task is to pre-process all the received
alerts that may be syntactically and semantically heterogeneous. All the alerts
are classified and stored in the local alert database that is used by the upper
layer as the only sensor-independent interface to store and retrieve heterogeneous
events.

2.3 Collaboration Layer

The collaboration layer is the only component connected to the collaboration
overlay network that is based on DHT. Being part of the overlay network, we
can assign a unique node identifier nodeID to each collaboration module. The
collaboration module has three main purposes.

– It is responsible for retrieving new events that have been stored in the local
alert database. These events are submitted to the DHT-based overlay net-
work through a key (messageId) that is computed over a significant field of
the event. As an example, the key used to submit a malware specimen can
be computed by applying a hash function to the malware, while a NIDS alert
can be submitted to the overlay network twice, using as keys the signature
ID and the IP address from which the illicit network packet originated. The
strategy used to determine which fields are involved in key computation can
be configured to fulfill specific analysis goals.

– It receives messages submitted by other collaboration modules that are con-
nected to the same overlay network. Each collaboration module is responsible
for a portion of the hash space (determined by the nodeID and by the im-
plementation details of the DHT algorithm), and receives all the messages
whose messageId fall within that hash space. This design choice allows each
collaboration module to receive all the messages that are relevant to one sce-
nario. As an example, this approach allows a single collaboration module to
receive all the events caused by the same source, thus achieving an effective
network-based and distributed alert aggregation and correlation scheme.

– Each collaboration module is responsible for the dissemination of the analysis
results to the other nodes connected to the overlay network. This guarantees
the timely disseminations of network activity reports to all the collaborative
nodes without any centralized bottleneck.

There are two ways to retrieve new alerts from the database: the collaboration
layer reads the collected data at regular interval (pull mode) or it is driven by
external calls (push mode). In the implementation presented in Section 4 we use
the pull mode.

2.4 Event Processing

The collaboration layer gets new events from the database and processes them
sequentially. For each event, it sends a number of messages depending on the



type of event and analysis goals. In the current version of the architecture, each
event retrieved from the database may have up to four interesting fields: the
malware’s binary code, the IP address of the server from which the malware has
been downloaded, the IDS signature ID and the IP address of the attacker. For
each of these fields a message is created using the hash of its value as messageId.
This message is received by the node with the nodeID closer to the messageId.
Before the insertion of a new message, the collaboration module monitors the
pre-existence of its messageId within the DHT. If there is not that value, the
message is inserted, and the sender node signals the arrival of a new message to
the receiver node. Otherwise, if the messageId already exists, the sender node
contacts the receiver node and it informs it about the generation of a new event
with the same messageId.

The receiver node behaves differently depending on the message type. If the
message contains a new malware, the receiver node takes care of its behavioral
analysis by relying on a local or remote sandbox. In all the other instances, the
node executes some anomaly detection strategies that are based on the frequency
of received events. It is important to observe that in this paper we do not focus
on specific event analysis algorithms, but on the architecture which permits to
collaborate and to share information. In particular, the proposed architecture is
algorithm agnostic and flexible enough to adopt several different analysis strate-
gies. Finally, the event analysis results are disseminated to all the interested
collaborative alert aggregators following a publish/subscribe paradigm [16].

3 Peer-to-peer vs. Hierarchical Architecture

3.1 Fault Tolerance

The completely distributed nature of the proposed architecture is inherently
fault tolerant, and lacks single points of failure that are typical of hierarchical
and centralized architectures, where alert aggregation, correlation and analysis
functions are aggregated in the root node of the architecture [1]. This node
represents a single point of failure and when it is unreachable the hierarchical
architecture is unable to complete any collaborative task. The effectiveness of
hierarchical architectures can be impaired even by failures of the nodes belonging
to intermediate layers of the tree. As an example, a failure of one of the tier-1
nodes causes the isolation of the complete sub-tree having the faulty node as its
root.

On the other hand, the proposed architecture leverages a completely dis-
tributed, network-driven aggregation and correlation technique. Each node is
responsible for aggregating and correlating only a small subset of alerts and
malware samples. If a node becomes unreachable, only the messages that would
have been handled by the faulty node are lost, while all the other nodes are not
influenced by the failure. Moreover, depending on the implementation of DHT
routing of the overlay network, the collaborative nodes can detect the failure of
a peer, and autonomously modify their local overlay routing tables accordingly.



Hence, the proposed architecture is able to autonomously reorganize itself and
restoring its efficiency with no human intervention.

Message replication schemes can also be used to reduce the (minimal and
transitory) message losses due to the failure of a collaborative node. In the cur-
rent version, it is possible to set a replication constant k denoting that, for each
message, k copies are created and maintained by the DTH overlay. One message
is sent to the node whose unique identifier nodeID is responsible for the mes-
sage key. The other k − 1 messages are sent to the k − 1 nearest neighbors, thus
guaranteeing full reliability for up to k − 1 failures, because the network would
maintain constant the number of replicas through periodic inspections (exper-
imental evaluation of message loss probability for higher number of concurrent
faults are presented in Section 5). By tuning the value of k, it is possible to
achieve the desired trade-off between overhead and fault tolerance.

3.2 Load Balancing

Hierarchical architectures, such as [1], concentrate malware analysis and alert
correlation tasks on the root node, so that they can avoid replicated analyses.
As a bad consequence, the computational load on the root is significantly higher
than the load of the intermediate nodes, to the extent that much more powerful
hardware is necessary to host the root services.

Another advantage of the proposed DHT-based distributed architecture is
represented by its intrinsic load balancing properties. Let us consider a scenario
in which a network participating to a collaborative hierarchical architecture is
targeted by an attacker, while the other participating networks are not. In a
similar situation, the load related to alert management and correlation is un-
evenly distributed because only the nodes related to the attacked network are
involved in alert management. Hence, an attacker could easily overload the path
connecting the attacked networks to the hierarchy root by attacking few selected
networks connected to the same higher-level node.

Uneven load distribution and overload risks are mitigated by the proposed
distributed alert aggregation and correlation scheme. As we avoid one centralized
aggregator, then there is no single path through which all the alerts generated
by a sensor (or a set of sensors in the same network) are transmitted. Alerts
gathered by one node in an attacked network are routed to multiple nodes,
based on the messageId characterizing each alert. Even if one network (leaf) is
heavily attacked, this scenario is well managed and the load is automatically
distributed among many nodes through different branches.

3.3 Scalability

Hierarchical architectures are based on a multi-tier management infrastructure
connecting the lowest layer alert managers (the leaves of the management tree)
to the root manager. Each manager node in the hierarchical architecture is able
to aggregate alerts generated by a finite number n of lower-layer sensors or man-
agers on the basis of computational complexity of alert management operations



and on bandwidth constraints. Hence, a hierarchical architecture can be modeled
as an n-ary tree, whose number of intermediate elements grows logarithmically
with the number of the leaves.

On the other hand, in the proposed architecture, all the alert management
operations are distributed among the leaves and there is no need for a separate
management infrastructure. This is a huge advantage in terms of scalability
and management, because it is not necessary to reconfigure the architecture
hierarchy, possibly by adding new layers to the management tree, whenever the
number of leaves increases.

3.4 Number of Stored Copies

Another advantage of the peer-to-peer architecture is represented by the smaller
number of copies of individual alerts and malware specimens. In a hierarchical
architecture, a copy of each different alert and malware specimen is maintained
in each node of the management tree by which the alert has been received. Let
us consider a tree of managers having order n, l leaves and height h = logn(l).
If c represents the number of copies of each alert stored by the nodes belonging
to the hierarchical architecture, then we have:

h ≤ c ≤

h−1∑

i=0

ni

This means that the number of copies c is comprised between the number of
manager nodes in the path between the leaf generating the alert and the root
of the tree (h) and the total number of manager nodes when the same alert has

been issued by all the leaves in the tree (
∑

h−1

i=0
ni ). As h grows proportionally

to the logarithm of the number of leaves, then the number of copies of each
alert (and malware specimen) that a hierarchical architecture needs to maintain
grows logarithmically with the number of leaves.

On the other hand, in the peer-to-peer architecture the number of copies of
each different alert is determined by the replication factor k, which is a config-
urable parameter independent of the number of nodes connected to the overlay.

A comparison between the number of stored copies is presented in Table 1.
The first row of this table represents the number of copies stored in the peer-
to-peer architecture having a replication factor k = 5. The number of copies
does not depend on any other parameter. The other rows contain the number of
copies stored in a hierarchical architecture characterized by a different number
of nodes and order. As an example, the second row shows that the number of
copies of the same alert in a hierarchical architecture with l = 1000 nodes and
order n = 10 is between 3 and 111, depending on how many leaves issue the
same alert.



Architecture Minimum Maximum

DHT overlay, k = 5 5 5

Hierarchical, l = 1000, n = 10 3 111

Hierarchical, l = 10000, n = 10 4 1111

Hierarchical, l = 100000, n = 10 5 11111

Hierarchical, l = 8000, n = 20 3 421

Hierarchical, l = 160000, n = 20 4 8421
Table 1. Number of store copies stored in the peer-to-peer and hierarchical architec-
tures

4 Prototype

The viability of the proposed architecture has been demonstrated through a
prototype. In compliance with the architecture description in Section 2, each
collaborative alert aggregator consists of different software modules that can be
divided in three classes. The first two classes include typical network defense
items. The third class includes communication software. The entire prototype is
based on open source software.

The current implementation of the collaborative alert aggregator can rely
upon heterogeneous sensors, thus being able to detect a wide range of threats.
In particular, we used Snort [2] (standard de-facto for signature based network
intrusion detection) as a NIDS sensor, and Nepenthes [3] as a low-interaction
honeypot.

The alert collector is implemented through the Prelude software [4,5]. All the
communications between the Prelude manager and the sensors is based on the
Intrusion Detection Message Exchange Format (IDMEF) [6], which is an IETF
standard for the generation and management of messages related to security
incidents.

The alert collector is configured to store all the collected alerts and malware
samples in the local alert database, implemented with MySQL [7].

The collaboration layer is implemented in Java and guarantees a platform in-
dependent application. The DHT-based overlay network relies on the FreePastry
libraries, a Java implementation of Pastry network [9–13]. These libraries guar-
antee a useful emulation environment, and implementation of two applications
based on Pastry: PAST [14,15], that is the persistent peer-to-peer storage utility
used to store information, and Scribe [16,17], used for multicast communications.

The collaboration module can be configured by editing an XML [18] file. The
interface with the alert database is implemented through JDBC drivers [19], thus
guaranteeing a high interoperability with the most common DBMS.

Events retrieved from the database are classified according to their type, and
managed by different classes. The current version of the prototype implements
four classes managing four heterogeneous types of event: malware samples, IP
addresses related to the server from which the malware is downloaded, IP ad-
dresses related to hostile activity and signatureId of alerts generated by a NIDS



sensor. The collaboration module is modular and its functions can be easily
extended by adding new classes for the management of other types of event.

After a message has been received, the collaboration module is responsible
for its storage, its analysis (possibly leveraging external services, such as Norman
sandbox [20] and CWSandbox [21]), and communication of the analysis results
to the other nodes. Each node can subscribe to specific areas of interests, thus
receiving only a subset of analysis results. In the current implementation, alert
storage is handled by PAST, while multicast dissemination of the analysis results
relies on Scribe. Finally, a custom application based on FreePastry provides a
one-to-one communication service.

PAST is a persistent storage utility distributed peer-to-peer network. It is
based on a Pastry layer for routing messages and for network management. We
adopt it because it is able to balance the storage space between all the nodes
and guarantees high fault tolerance. Each PAST node, identified by an ID of 128
bits (nodeID), acts both as a storage repository and as a client access. Any file
inserted into PAST uses a 160-bit key, namely fileId (messageId in our case).
When a new file is inserted into PAST, Pastry directs the file to the nodes whose
nodeID is numerically closer to the 128 most significant bits of messageId, each
of which stores a copy of the file. The number of involved nodes depends on the
replica factor chosen for availability and persistence requirements.

5 Validation and Performance Evaluation

Viability and performance of the proposed architecture have been demonstrated
through extensive experiments and simulations. Small scale experiments, through
the prototype comprising few tens of nodes, have been carried out by execut-
ing several instances of the collaboration module in few hosts and by binding
each instance on different port numbers. Tests for large number of nodes include
the network emulation environment provided by the FreePastry libraries. This
solution allows us to launch up to one thousand nodes on each Java Virtual
Machine.

Very large scale simulation involving up to ten thousand nodes are carried
out through an ad-hoc simulator. It considers the high-level behavior of the hi-
erarchical and DHT-based architectures and omits the low level details related
to the transmission of messages over the network and their storage within the
local alert database. Although simplified, the simulator uses the same routing
schemes of the prototype, and it has been validated by executing the same (re-
duced scale) experiments on the prototype and on the simulators and by verifying
the complete agreement of the results.

5.1 Dependability and Fault Tolerance

The completely distributed nature of the proposed architecture is inherently fault
tolerant, and lacks single points of failure. While the failure of few nodes does
not impair the architecture dependability, it is possible that an alert message



sent to a faulty node can be lost. To minimize the chances of loosing alerts,
the proposed architecture relies on the message replication scheme described in
Section 3. It is possible to configure a replication factor k, so that each message
is sent to the k collaborative alert aggregators whose nodeID is nearest to the
message key.

The ability of the proposed architecture to sustain faults and node churn is
demonstrated through several simulations. In each run we simulate an overlay
network consisting of a variable number of collaborative nodes (from 1000 to
10000), and we randomly generate a set of messages. Once guaranteed that each
node is responsible for at least one message, we simulate the concurrent failure
of a percentage of collaborative alert aggregators, ranging from 1% to 10% of
the nodes. Then, we wait for PAST to run a scheduled update, thus restoring
k copies of each message not lost due to the concurrent node failures, and we
check whether all messages created at the beginning of the simulation are still
available. The results are presented in Tables 2 and 3.

In Table 2 we compare networks of different sizes (between 1000 and 5000)
where nodes use a replica factor k = 5 (5 copies of each message). The number
of faulty nodes is denoted as a percentage of the total number of nodes. For each
failure rate and for each network size, we run the simulation 100,000 times. The
message loss rate is expressed as a percentage of the 100,000 runs in which at least

one message has been lost. As an example, the cell in the fourth row and second
column in Table 2 denotes that a network of 1000 collaborative nodes with 40
concurrent failures (4% for the number of nodes) lost at least one message in
only 0.01% of the 100,000 tests.

Concurrent fault rate (%) 1000 nodes 2000 nodes 5000 nodes

1 0 0 0

2 0 0 0

3 0 0 0,01

4 0,01 0,02 0,04

5 0,02 0,04 0,12

6 0,06 0,12 0,24

7 0,11 0,22 0,6

8 0,19 0,42 1,04

9 0,35 0,76 1,8

10 0,58 1,16 2,99
Table 2. Message loss probability for k = 5 and for different numbers of nodes and
faults

In Table 3 we report the results about the influence of the replica factor k
on the probability of losing a message. In these simulations we use a network
size of 10,000 collaborative nodes, and we vary both the concurrent failure rate
(expressed as percentage of the number of nodes) and the replica factor (with
values of k ranging from 4 to 6). As in the previous set of experiments, for each



combination of fault rate and replica factor we run 100,000 simulations. The
packet loss probability is expressed as the percentage of simulations in which at
least one message has been lost.

Concurrent fault rate (%) k=4 k=5 k=6

1 0,009 0 0

2 0,16 0,003 0

3 0,735 0,019 0,001

4 2,117 0,075 0,002

5 5,022 0,219 0,015

6 9,732 0,542 0,037

7 16,64 1,186 0,081

8 25,859 2,172 0,159

9 36,682 3,774 0,315

10 48,685 5,904 0,529
Table 3. Message loss probability for a network of 10,000 nodes and for different k

These experiments demonstrate that by using appropriate values of the replica
factor k, it is possible to achieve negligible message loss probability even for large
networks and (unrealistic) concurrent failures of hundreds of geographically dis-
tributed and independent nodes.

5.2 Load Balancing and Scalability

In this section we compare the load of the proposed peer-to-peer architecture
against that of the lowest layer of alert manager in the hierarchical architecture
presented in [1].

Experiments are carried out by simulating a network of 5000 collaborative
nodes, and a hierarchical architecture with the same number of leaves. Each
intermediate manager node of the hierarchical network is connected to a random
number of elements in the lower level, uniformly chosen between 5 and 20. The
resulting tree has 4 layers and 420 low-level managers, directly connected to
the leaf sensors. Figures 3 and 4 compares the load distribution among the
5000 collaborative alert aggregators in the DHT-based overlay and the load
distribution among the 420 manager nodes of the hierarchical architecture.

Figure 3 represents the best-case scenario for the hierarchical architecture,
in which all the 500,000 messages (100 messages for each leaf, on average) are
uniformly distributed among the leaves. The uniform distribution among all the
leaves simulates an unrealistic scenario in which network attacks are uniformly
distributed among all the sensors that generate alerts at the same rate. The
two lines of Figure 3 represent the cumulative distribution function (CDF) of
the number of messages that each node in the collaborative architecture (line



P2P) and each low-level manager in the hierarchical architecture (line Hier-

archical) has to manage. The X axis represents the ratio between the num-
ber of messages handled by a node and the expected average value (that is,
500, 000/5000 = 100 messages per collaborative node in the collaborative archi-
tecture, and 500, 000/420 = 1190.48 messages per manager in the hierarchical
architecture). The vertical line represents the ideal load distribution, in which
all the nodes handle a number of messages that is equal to the expected average
(hence the ratio between the handled messages and the expected ratio is 1).

Fig. 3. Load balancing with random inserts

As shown in Figure 3, characterized by a uniform distribution of alerts among
sensors, the load of the hierarchical architecture is better distributed than that
of the collaborative overlay. Indeed, all the nodes in the hierarchical architecture
handle a number of messages between 40% and 150% of the expected average.
However, even in the best-case scenario for the hierarchical architecture, the load
distribution of the two collaborative architectures is comparable. Indeed, the two
distributions behave similarly for about 70% of the nodes; 20% of the nodes in
the peer-to-peer architecture are more loaded than the most loaded nodes of the
hierarchical architecture, but the highest load is still manageable and limited to
3.2 times than the expected load.

In Figure 4 we report the results of a more realistic scenario, in which 500,000
messages are not generated uniformly by all the collaborative alert aggregators,
but they follow a Zipf distribution1 (known to be a realistic representation of

1 The used formula is f(Pi) = c

i
, where i is the rank, Pi indicates the event which occu-

pies the i-th rank (the i-th most frequent), f(Pi) is the number of times (frequency)
that the Pi event occurs, c is a constant equivalent to Pi



traffic distribution and load of nodes in the Internet). The two cumulative dis-
tributions in this figure show the benefits of the hash-based event distribution
algorithm implemented by the DHT-based overlay network. The node managing
an alert is determined by the alert content and not by the network generating
it, hence the load distribution of the proposed architecture in this scenario is
identical to that presented in Figure 3. On the other hand, the load distribution
in the hierarchical architectures is highly unbalanced. For example, the most
loaded manager handles a number of messages equal to 103 times the expected
average.

Fig. 4. Load balancing with Zipf distribution based inserts

We consider now an attack scenario in which all the events are generated
by one sensor (or by several sensors connected to the same low-level manager).
This is the worst case for a hierarchical architecture, because all the alerts must
be handled by the same manager node. The results are impressively poor: one
manager has to sustain a load 420 higher than that related to the expected
average. On the other hand, the proposed architecture preserves the same load
distribution of the other two scenarios. This shows the robustness of the peer-
to-peer architecture with respect to any attack scenario.

6 Conclusion

In this paper we propose an innovative architecture for collaborative and dis-
tributed intrusion detection, malware analysis and alert dissemination.

With respect to previous work in the same field, our architecture represents
a more flexible cooperation infrastructure that is able to manage heterogeneous



information, ranging from IP addresses to the complete binary code of malware
specimens and IDS alerts. Moreover, our architecture is not focused on a specific
analysis algorithm and can leverage heterogeneous analysis engines. Finally, a
publish/subscribe scheme is used for efficient and timely dissemination of rele-
vant analysis results to all the collaborative nodes.

Being based on a DHT overlay, the proposed architecture avoids single points
of failures, guarantees high scalability, load balancing and self organization capa-
bilities, that allows us to implement a system that may integrate several thousand
collaborative nodes. The viability of the proposed architecture is demonstrated
through a prototype based on open source software, while large scale results
referring to up to 10,000 nodes have been obtained through simulations.

We are now working on a hardened version of the distributed architecture
that uses digital certificates and secure communications among the peers. We
are also improving the detection algorithm in order to detect polymorphic and
metamorphic malware where the cryptographic hashes of the binary code are
different for every sample thus preventing the identification of the same threat.

7 Acknowledgments

This research has been funded by the IST-225407 EU FP7 project CoMiFin
(Communication Middleware for Monitoring Financial Critical Infrastructures).

References

1. M. Colajanni, D. Gozzi, M. Marchetti, “Collaborative architecture for malware de-
tection and analysis”, Proc. of the 23rd International Information Security Confer-
ence (SEC 2008), Milano, Italy, Sept. 2008.

2. Snort - the de facto standard for intrusion detection/prevention,
http://www.snort.org/

3. Nepenthes - finest collection -, http://nepenthes.mwcollect.org/
4. Prelude, http://www.prelude-ids.com/en/welcome/index.html
5. Prelude Universal SIM project Trac, https://trac.prelude-ids.org/
6. IDMEF standard described in rfc4765, http://www.ietf.org/rfc/rfc4765.txt
7. MySQL, http://www.mysql.com/
8. FreePastry, an open-source implementation of Pastry, http://www.freepastry.org
9. A. Rowstron and P. Druschel, “Pastry: Scalable, distributed object location and

routing for large-scale peer-to-peer systems”, Proc. of the IFIP/ACM International
Conference on Distributed Systems Platforms (Middleware), Heidelberg, Germany,
Nov. 2001

10. M. Castro and P. Druschel and A.M. Kermarrec and A. Rowstron, “One ring
to rule them all: Service discovery and binding in structured peer-to-peer overlay
networks”, Proc. of the 10th SIGOPS European Workshop, Saint-milion, France,
Sept. 2002

11. M. Castro and P. Druschel and Y. Charlie Hu and A. Rowstron, “Exploiting Net-
work Proximity in Distributed Hash Tables”, Proc. of the International Workshop
on Future Directions in Distributed Computing (FuDiCo), Bertinoro, Italy, Jun.
2002



12. M. Castro and P. Druschel and A. Ganesh and A. Rowstron and D. S. Wallach,
“Security for structured peer-to-peer overlay networks”, Proc. of the 5th Symposium
on Operating Systems Design and Implementaion (OSDI’02), Boston, MA, USA,
Dec. 2002

13. R. Mahajan and M. Castro and A. Rowstron, “Controlling the Cost of Reliability
in Peer-to-peer Overlays”, Proc. of the 2nd International Workshop on Peer-To-Peer
Systems (IPTPS’03), Berkeley, CA, USA, Feb 2003

14. P. Druschel and A. Rowstron, “PAST: A large-scale, persistent peer-to-peer storage
utility”, 8th Workshop on Hot Topics in Operating Systems (HotOS VIII), Schoss
Elmau, Germany, May 2001

15. A. Rowstron and . Druschel, “Storage management and caching in PAST, a large-
scale, persistent peer-to-peer storage utility”, Proc. of the 18th ACM Symposium
on Operating Systems Principles (SOSP’01), Chateau Lake Louise, Banff, Canadav,
May 2001

16. A. Rowstron and A.M. Kermarrec and M. Castro and P. Druschel, “SCRIBE: The
design of a large-scale event notification infrastructure”, Proc. of the 3rd Interna-
tional Workshop on Networked Group Communication (NGC2001), UCL, London,
UK, Nov. 2001

17. M. Castro and M. B. Jones and A.M. Kermarrec and A. Rowstron and M. Theimer
and H. Wang and A. Wolman, “An Evaluation of Scalable Application-level Mul-
ticast Built Using Peer-to-peer overlays”, Proc. of the Infocom’03, San Francisco,
CA, USA, Apr. 2003

18. Extensible Markup Language (XML), http://www.w3.org/XML/
19. The Java Database Connectivity (JDBC),

http://java.sun.com/javase/technologies/database/index.jsp
20. Norman SandBox Information Center, http://sandbox.norman.com
21. CWSandbox, Behavior-based Malware Analysis remote sandbox service,

http://www.cwsandbox.org
22. D. J. Malan and M. D. Smith, “Host-based detection of worms through peer-to-

peer cooperation”, Proc. of the 2005 ACM Workshop on Rapid Malcode (WORM
2005), Fairfax, VA, USA, Nov. 2005

23. C. L. Dumitrescu, “INTCTD: A Peer-to-Peer Approach for Intrusion Detection”,
Proc. of the 6th IEEE International Symposium on Cluster Computing and the
Grid (CCGRID’06), SMU Campus, Singapore, May 2006

24. C. V. Zhou and S. Karunasekera and C. Leckie, “A peer-to-peer collaborative
intrusion detection system”, Proc. of the 13th IEEE International Conference on
Networks (ICON ’05), Kuala Lumpur, Malaysia, Nov. 2005.

25. V. Yegneswaran, P. Barford, and S. Jha, “Global Intrusion Detection in the
DOMINO Overlay System”, Proc. of the ISOC Symposium on Network and Dis-
tributed Systems Security (NDSS’04), Feb. 2004.

26. I. Stoica, R. Morris, D. Karger, F. Kaashoek, and H. Balakrishnan, “Chord: A
Scalable Peer-To-Peer Lookup Service for Internet Application”, Proc. of the ACM
SIGCOMM2001, San Diego, CA, USA, Aug. 2001.

27. M. E. Locasto and J. J. Parekh and A. D. Keromytis and S. J. Stolfo, “Towards
Collaborative Security and P2P Intrusion Detection”, Proc. of the IEEE Information
Assurance Workshop (IAW’05), Maryland, USA, Jun. 2005

28. Ramaprabhu Janakiraman, Marcel Waldvogel, Qi Zhang, “Indra: A peer-to-peer
approach to network intrusion detection and prevention”, Proc. of the 12th IEEE
International Workshops on Enabling Technologies (WETICE 2003), Linz, Austria,
Jun. 2003


