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a b s t r a c t

Modern Internet-based systems typically involve a large number of servers and
applications and require real-timemanagement strategies for cloning andmigrating virtual
machines, aswell as re-distributing or re-mapping the underlying hardware. At the basis of
most real-time management strategies there is the need to continuously evaluate system
state behavior and to detect when a relevant state change is occurring. Modern Internet-
based systems open new and interesting scenarios in the field of the research on the online
state change detection models.

In this paper, we propose an adaptive state change detection model that we
demonstrate is suitable to analyze continuous streams of data coming from Internet-based
systems characterized by high variability and non stationarity of the monitored resource
measures that result in not-acceptable false alarm rates. Our model solves the limits of
the traditional solutions while retaining their computational efficiency. The solution we
present combines two key elements: an on-line wavelet model to denoise data streams
and an adaptive detection rule. Experiments carried out using empirical and synthetic data
sets confirm that the proposed method is able to signal all relevant state changes limiting
the incorrect detections and to provide robust results even in non-stationary and highly
variable contexts.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Most real-time management decisions related to modern Internet-based systems are activated after a notification that
a relevant state change has occurred in some system resource(s). Anomaly detection, quality and access control, request
redirection, process and virtual machine migration, hardware re-mapping, diagnosis and fault detection, to name a few, are
examples of processes that are activated after the detection of a significant and non-transient system state change. For this
reason, the most important system resources should be continuously monitored and data passed to some statistical models
that decide almost immediately whether a relevant state change has occurred or not.

Internet-based systems pose novel challenges in the field of state change detection. We are moving from the more
traditional area of offline contexts, where the models are applied, to well defined sets of data with (almost) no temporal
constraints, to online contexts, where models receive continuous streams of data and have to answer almost immediately.
We have to consider novel types of data streams. Indeed, because of internal system operations, such as context switching,
virtualization, and I/O operations, and of the unpredictable variability of the user request rates,monitored resourcemeasures
are non-stationary and typically both the mean and the variance varyover time. Moreover, these measures exhibit what we
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can call high variability, that corresponds to a standard deviation comparable to (and even larger than) the mean and that
can be quantified by a coefficient of variation larger than one. Finally, non-stationary behaviors occur at a faster time scale
with significant variations even over short time intervals.

In these contexts, the most common models used to support the detection of relevant state changes, such as Particle
Filtering [1], Kalman filter [2] and Sequential Monte Carlo Method [3], are not effective because they require a knowledge
of some statistical characteristics of the time series [4,5]. Other popular state change detectors, such as the threshold-based
detectors, the Shewhart chart, the Exponential Weighted Moving Average (EWMA) chart and the traditional Cumulative
Sum (Cusum) chart, are often inadequate because when data streams are characterized by non-stationary behaviors and
high variability, they cause either a large number of false detections or an absence of detections depending on the chosen
parameters of the model [6,7].

In this paper, we propose a new adaptive model that combines two key ingredients:

• a detection rule based on a new adaptive implementation of the Cusum model [8] that is able to keep the detector
performance (in terms of both false detection rate and absence of detection rate) close to optimal;

• a data representation that uses an online wavelet-based filter that is able to rectify the monitored data by eliminating
random non-Gaussian errors while retaining the main features of the original data stream.

We demonstrate that the proposed adaptive state change detection model is able to provide the best results for several
statistical characteristics of data coming from real and emulated contexts, and that it is able to satisfy the temporal
constraints that are typical of real-time resource management systems.

The rest of the paper is organized as follows. In Section 2we present the relatedwork and compare our contributionwith
the state of the art. Section 3 presents the definition of relevant state change detection applied to continuous streams of data,
and gives additionalmotivation for this research. Section 4 details our adaptive detectionmodel, which is compared to other
detection algorithms in Section 5. Section 6 introduces themain performancemetrics used to evaluate the detection quality
and compares the results of the proposed adaptive model against other popular models for several data streams. Section 7
analyzes the results of the proposed model for real data sets. We conclude the paper in Section 8 with some final remarks.

2. Related work

This paper differs from most literature on state change detection that is oriented to offline models. Instead, we are
interested to online detection algorithms that analyze continuous data streams as required by typical modern Internet-
based systems, wheremulti-core architectures host multiple interactive services. Detecting changes through offline models
on the entire data set has several advantages, amongwhich the possibility of evaluating its statistical characteristics and the
possibility of adopting complex stochastic models and algorithms because there are no temporal constraints imposed by
the application context. Online models represent a time series as a stream of samples, whose statistical properties (mean,
variance, etc.) vary over time. Since it is not possible to predict how the statistical properties of the data stream will evolve,
all themodels that require a statistical characterization of the data are not applicable in this context. On the other hand,more
advancedmodels that are able to adapt to changes in the statistical properties of the data are not suitable because their high
computational complexity is not compatible with the time constraints of online state change detection. Moreover, most
online models do not work well when the data are characterized by non-stationarity and high variability. In general, these
properties limit the performance of the online models that work directly on the raw data coming from the data streams [9].
For this reason, the majority of papers on the online models working on non-stationary and highly variable data streams
[10–12] combine two elements: a model for the data representation that has to provide a denoised/rectified view of the raw
data, and a model for the detection rule that has the scope to detect when a change happens. For this reason, we present
separately the data representation and the detection rule problems that are at the basis of the algorithms for online state
change detection [7,13].

The majority of data representation techniques assumes a preliminary knowledge about the statistical properties that
characterize the state of the time series and their time evolution (e.g., Kalman filter [2], sequentialMonte Carlomethod [3]) or
an empirical evaluation of them (e.g., particle filtering [1]). The non-stationary and unpredictable behavior that characterizes
the data streams coming from themonitored resources of Internet-based systems prevents the applicability of thesemodels
because of the impossibility of defining a priori a set of statistical properties that are able to represent the evolution of the
entire time series.Moreover, a continuous estimation of the statistical properties is incompatiblewith online constraints. The
simple models proposed in [12,14] based on a Kalman filter for data representation are able to support the non-stationarity
of the Internet-based systems because they do not require any a priori information about the time series states, but they are
unable to provide reliable data representations in highly variable with variable variance contexts. Other popular methods
to remove perturbations are based on linear filtering methods, such as mean filtering, exponential smoothing [6,9,11] and
Fourier transform [15]. They are adequate for online applications because of their low computational cost. In highly variable
contexts, the simplicity of these methods has some drawbacks: the linear filtering methods remove all frequencies above a
cutoff value, hence if the resulting smoothed representation removes all the perturbations, significant features of the time
series, such as relevant stage changes, also might be smoothed out. On the other hand, if the resulting data representation
preserves the main original features, many perturbations may continue to characterize the time series and risk to cause
many false detections.
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Therefore, we think it is necessary to refer to non-linear and multiscale data representation algorithms that maintain a
computational complexity compatible to online contexts. Our choice goes to the wavelet-based algorithm [16] because it is
able to separate themain features of the time series from its perturbations. Thewavelet-basedmethods are applied tomany
fields [17,16] because they are able to limit the time series perturbations also in highly variable contexts. The reason is that
they use an orthonormal basis localized in space and frequency. On the other hand, the linear filters, such as exponential
smoothing, use the sine-cosine basis that is localized only in frequency and not in space. In this paper, we propose an online
adaptation of the wavelet-based representation described in [18] that considers a moving window of dyadic length and a
dynamic estimation of the model parameters.

We pass now to consider the detection rule problems. The online constraints prevent us from adopting several algorithms
and models for state change detection working offline (e.g., [8]). Moreover, we cannot refer to proposals (e.g., machine
learning, Principal Component Analysis, neural networks [19]) that assume some prior knowledge about the time series
characteristics, especially about the probability of state changes and their distribution, because the considered scenarios are
characterized by non-deterministic, non-stationary and highly variable behaviors.

When it is impossible to assume or evaluate online the statistical properties characterizing a time series, a typical
approach for detecting state changes is to refer to threshold-based algorithms [20]. The results of these models are not
robust because there is no theoretical support for the choice of the threshold value(s), that remains an empirical choice.
Although these models are unsuitable for the highly variable context of interest for this paper, we consider a threshold-
based algorithm just for comparison purposes.

In this paper, we refer to the family of Cusum models that are considered the best choice for the online state change
detection [6]. To provide optimal results, the Cusum model requires us to know the reference value of the system state.
However, when the state value is unknown, such as in our contexts, the Cusum is applied to a data representation based on
exponential smoothing [6,7] that provides a dynamical estimation of the state. In [21] we use this technique on a modified
version of the Cusum that is able to adapt its parameters on the basis of the process variance. For this reason, we consider
a Cusum-based statistical model as a basis for our detection rule. However, we found out that a detection algorithm alone
it is not sufficient because, in contexts characterized by highly variable time series with variable intensity of perturbations,
the data representation based on the exponential smoothing exhibits several problems and the performance of the entire
state change detection algorithm tends to decrease.

The main strength of our approach, that differentiates the proposed online state change detection model from all the
previous works, is the ability to reliable state change detections in non-stationary and highly variable contexts. This critical
task is carried out by a novel adaptive detection model that uses a data representation based on an adaptive version of the
online wavelet transform and an adaptive version of the Cusum detection rule. Our proposed adaptive detection model is
the first to achieve a good tradeoff between the number of false detections and the absence of detections in highly variable
contexts because it uses a data representation that is able to remove all undesired perturbations while preserving the most
relevant data information, such as the state changes.

3. Problem definition

3.1. Online detection problem

We are interested in an online version of the state change detection problem where the time series is represented by a
continuous stream of measurements of the resource usage of Internet-based servers.

In time series characterized by non-stationary conditions, a state is defined as a subset of the continuous data stream
where data are characterized by the same statistical properties that we generically denote by ϑ . It can refer to one attribute
(e.g., mean, variance, distribution) or a combination of them. We define relevant state change as a shift larger than∆ > 0 in
the ϑ metric that the model should be able to timely detect. The actual value of∆ is actually application-dependent.

We consider a continuous stream of temporally ordered samples {y} = {y1, . . . , yi, . . .}, and we focus on operations
and parameters that the model has to apply at a generic sample yi. Before this sample, we can assume that the model has
identified one ormore state(s), each characterized by an online computation of the statistical characteristicsϑ of interest for
the detection model. Let us denote by ys and byϑs the first sample of the present state of the data subset including yi and its
estimated statistical characteristics, respectively. (We implicitly assume that there was no relevant state change between ys
and yi.) At the sample yi, the online detectionmodel has to evaluatewhether a relevant state change occurs or not. To do this,
a statistical representation fy(ys, . . . , yi) of the samples between ys and yi is dynamically evaluated to provide an estimation
of the statistical properties of the data stream and a detection rule must verify whether the deviation among the estimated
statistical properties of the current stateϑs and the statistical representation fy(ys, . . . , yi) of the samples between ys and yi
overcomes a certain threshold. This is typically done on the basis of the likelihood ratio [22], that estimates the deviations
among the statistical representation of the data samples and the current state.

We distinguish two classes of detection models, where the differences reside mainly in the way to consider these
deviations, theway to choose the statistical threshold, and theway to represent the samples between ys and yi. In particular,
the first class uses as a threshold a function f 1∆ of the minimum value ∆ of the shift that the model should capture and
compares f 1∆(∆)with a punctual evaluation of the deviation between the estimation of the current stateϑs and the function
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(a) Time series. (b) Gain functiong .

Fig. 1. Detecting relevant state changes through a gain function.

fy(ys, . . . , yi). The models belonging to this class (e.g., the threshold-based models [20] and the Exponential Weighted
Moving Average (EWMA) [6]) can detect the presence of a relevant state change on the basis of the following equation:

detection rule =


state change, if |ϑs − fy(ys, . . . , yi)| ≥ f 1∆(∆)
no state change, otherwise. (1)

The second class of state change detection algorithms are based on a gain function g (e.g., the Cumulative Sum [8]). The
gain function g can be considered as an accumulator of the detection model: during a relatively stable state it should be
close to zero, and it should depart from zero when a relevant change occurs in the time series. It sums up the consecutive
partial increments (decrements) among the online estimation of the current state ϑs and the sample yi every time that the
deviation between the current state estimationϑs and the online data representation fy(ys, . . . , yi) reaches a reference value
of the minimum shift∆ computed by the function f 2∆. In such a case:

gi = gi−1 + fg(|ϑs − yi|), if |ϑs − fy(ys, . . . , yi)| ≥ f 2∆(∆) (2)

gi = gi−1, if |ϑs − fy(ys, . . . , yi)| < f 2∆(∆) (3)

where g is initialized to g0 = 0 and it is reset to 0 every time that a state change is detected. g is characterized by a stable
valuewhen the condition |ϑs− fy(ys, . . . , yi)| ≥ f 2∆(∆) is not satisfied. The function fg(|ϑs−yi|) computes the actual value of
increment (decrement) among the online estimation of the current stateϑs and the actual sample yi thatmust be summed to
gi−1. The choice of the function fg differs from a detectionmodel to another [22] and depends on the statistical characteristics
representative of a time series. When the intensity of consecutive detected shifts is over a given threshold H , the model has
to signal a relevant state change. Therefore, the detection rule of this class of models can be written as follows:

detection rule =


state change, if gi ≥ H
no state change, otherwise. (4)

The choice of the characteristic threshold H depends on the specific gain function g and on the performance required by the
state change detection algorithm.

We give an example of gain function computed on the time series of Fig. 1(a). It refers to the CPU utilization of a server
sampled every five seconds and that is characterized by a relevant load change at sample 100. Fig. 1(b) reports the results
of the gain function g applied to that time series. As expected, g is characterized by a significant increment at the instant of
the relevant change in the system load.

For both classes of detectors,when a relevant state change is detected, the detectionmodel has to provide an estimation of
the statistical characteristicϑ of the novel state. For simplicity reasons, without loss of generality, in this paper we consider
the state change detection problem applied to the case of relevant changes in themean of the time series. Hence,we considerϑ = µ. In this way, after a state change the estimation of novel state should be able to capture the central tendency of the
time series during that state.

3.2. Online detection problem in non-stationary, highly variable and spike contexts

The performance of the state change detection algorithms depends heavily on the statistical properties of the time
series [6]. The context of the Internet-based servers where data streams are continually collected from monitored system
resources opens interesting new challenges. These servers are subject to variable resource demands, heterogeneous
processes, and different levels of virtualizations. Consequently, monitored system resources are characterized by high levels
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of utilization, unexpected and unpredictable events and several sources of perturbations which result in spikes. The highly
variable, non-stationary and unpredictable usage of resource measures and the presence of spikes and other perturbations
with variable intensities complicate the identification of the system state and state changes. Detecting relevant state changes
is further complicated by the temporal constraints imposed by real-time management strategies that receive the outputs
of the online detection algorithms. This novel perspective prevents the application of state of the art algorithms working
offline (e.g., [8]). We will show that it causes poor performance even of the most popular algorithms that can be applied to
online continuous streams.

We give some examples of the major issues that affect the online detection algorithms when applied to Internet based
servers. The architecture that we use for our evaluations is a typical distributed multi-tier Web system that is based on
the implementation presented in [23]. The application servers are deployed through the Tomcat servlet container, and are
connected to MySQL database servers. In our experiments, we exercise the system through realistic traces. We emulate
more variable scenarios by means of the TPC-W workload generator [24]. Our workload scenarios are described by distinct
step variations of the external load obtained by changing the number of emulated browsers. The algorithm that we use in
the following evaluation is the Cumulative Sum (Cusum) that is a widely used sequential analysis technique for detecting
changing points in time series.

In the following examples, we use the CPU utilization of the database server as the representative system resource
measure, because of the strong correlation of its utilization level with the external load (larger than 0.8). We set
as representative state values {µ} the mean of the CPU utilization samples during the period in which the external
load was constant and select the samples of change {s} as the sample in which the number of emulated browser
changes. Fig. 2(a), Fig. 3(a) and Fig. 4(a) show the CPU utilization of three database servers that are subject to different
external loads: the first user scenario is characterized by relevant changes in the number emulated browser at samples
{50, 150, 200, 250, 315, 440, 475, 540}; the second one by any relevant change; and the last one by a single relevant change,
at sample 300, in which both the user requests type and the number of emulated browser are changed. We consider that all
detected changes signaled correctly by the detection algorithm are called true positives (TP). If an algorithm does not detect
one relevant state change, the related sample is classified as false negative (FN). Analogously, the detection of a change is
classified as false positive (FP) if it occurs when the time series is in a stable state.

Fig. 2(b), Fig. 3(b) and Fig. 4(b) show the results of the gain function g function referring to the Cusum algorithm. In all
of these figures, the horizontal dotted lines represent the upper and lower H thresholds set by the model, that signals a
relevant state change every time the gain function g overcomes these limits. Each circle at the bottom and at the top of the
figures denotes a false positive detection, that is, a signaled change that does not correspond to a real state change. A cross
denotes a correct detection of a state change, that is a true positive.

Fig. 2(a) reports a time series characterized by non-stationary, highly variable and unpredictable data. These statistical
properties of the data streammake it difficult for themodel to identify intervals of stability inwhich the statistical properties
ϑ remain constant. This reflects in oscillating values of the gain function that cause a lot of signals not corresponding to real
state changes: there are eleven false positive detections and two false negative detections that are the undetected changes
at samples 315 and 540.

Fig. 3 reports a typical result achieved by existing algorithms by the Cusum algorithm applied to spiky time series. Since
the g function accumulates the deviations of the monitored data from the current state, it records also the contributions
of instantaneous spikes and anomalous perturbations departing from the current data behavior. These contributions are
usually of high intensity and cause an immediate exceeding of the H threshold. For this reason, we have false positive
detections corresponding to the peaks of the time series. Removing out-of-scale values through filtering algorithms before
applying the detection rule should solve this problem. For this reason, instead of using the original time series {y}, we suggest
the use of an online data representation {x}, that is a rectified version of the monitored samples. More details will be given
in Section 4.3.

In Fig. 4 we report an example where the Cusum detection model is applied to a time series characterized by a variable
variance that passes from a higher value in the interval [0:300] to a lower value after the state change. Here, the detector
exhibits two problems: false positive detections at samples 90 and 112 during the interval of high variance and excessive
delay because the relevant state change is signaled 21 samples after its occurrence at sample 300. A late detection is
equivalent to an incorrect detection when the delay is incompatible with the temporal constraints imposed by the online
context. These problems are the consequence of a static estimation of the time series variance used by the models for
detecting changes in the mean [7]. For this reason, an efficient state change detection model in the context of Internet-
based systems must adapt its detection policies to the variable variance of the time series.

This preliminary analysis shows the main problems that may affect an online state change detection algorithm when
the time series shows the main statistical properties characterizing data streams related to Internet-based servers: false
detections and lack of signals. We conclude that novel online detection models are required in the context of data streams
related to modern Internet-based architectures.

4. Adaptive model for state change detection

The performance of change detection algorithms is highly dependent on the statistical characteristics of the measured
data [6]. Because of the inherent variability and non-stationary behavior of the monitored processes related to Internet-
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(a) Time series. (b) Results of the Cusum algorithm.

Fig. 2. Time series characterized by non-stationarity, high variability and unpredictability.

(a) Time series. (b) Results of the Cusum algorithm.

Fig. 3. Time series characterized by spikes.

based servers, existing algorithms achieve poor results. We propose a new methodology that extends and integrates two
well knownmodels (Cusum [8] andwavelet [16]) in two directions: adaptability and application to continuous data streams.
The integrated version can be efficiently implemented and is therefore suitable to online detections. The motivation for our
choice comes from the observation that the Cusum change detection algorithm has been proven to be optimal in terms of
detection delay andminimum false alarm probability [25]. Nevertheless, its direct application leads to poor results when the
data stream is characterized by high variability. To this end, we combine it with an online wavelet filter. We adopt wavelet
filters for their ability to remove random errors from time series (an operation which is known as denoising or rectification
depending on the context [18]) without affecting the relevant features of the original data stream. In this respect, they have
proven to be optimal with respect to various error norms and smoothness property [18].

4.1. The baseline Cusum algorithm

Cusum is a widely used model for detecting changing points in otherwise stationary time series with known statistical
characteristics. Proposed by Page in 1954 [8], this technique has been extensively studied and extended since [4,26]. The
Cusum algorithm has been shown to be optimal when the variance of the time series does not change, in that it guarantees a
minimummean delay to detection in the asymptotic regimewhen themean time between false alarms goes to infinity [25].

In this section, we describe the baseline Cusum algorithm; we use it in the experiments as a comparison testbed and to
illustrate the benefits of our online Adaptive Cusum algorithm.

Given a time series {ys, . . . , yi} with known mean µs, the one-sided Cusum detects an increase in the mean through the
following gi gain function:

g+

0 = 0 (5)

g+

i = max{0, g+

i−1 + yi − (µs + K+)} (6)
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(a) Time series. (b) Results of the Cusum algorithm.

Fig. 4. Time series characterized by variable variance.

whichmeasures positive deviations of themonitored time series yi from the state valueµs. The gain function g+

i accumulates
deviations of yi from the state value µs that are greater than a pre-defined threshold K+, and resets to 0 on becoming
negative. The termK+, which is known as the allowance or slack value, determines theminimumdeviation that the statistics
g+

i accounts for, and depends on the choice of theminimum shift to be detected,∆. According to the detection rule common
to all detection models, a positive change is signaled when g+

i exceeds a design chosen threshold H+.
The one-sided Cusum test for detecting negative deviations is defined similarly, as:

g−

0 = 0 (7)

g−

i = max{0, g−

i−1 + (µs − K−)− yi} (8)

A negative change is signaled when g−

i exceeds a threshold H−.
A two-sided test to detect both increases and decreases is obtained by applying the two tests simultaneously. As in this

paper we are interested in detecting both increases and decreases, we will consider the two-sided test. For the sake of
simplicity we will consider the symmetric case whereby K+

= K−
= K and H+

= H−
= H .

When a relevant shift is detected, the Cusum test also provides an estimate of the new system state µs+1 through the
following equations:

µs+1 =


µs + K +

g+

i

N+
if g+

i > H

µs − K −
g−

i

N−
if g−

i > H
(9)

where N+(N−) denotes the number of samples elapsed since the last time g+

i (g
−

i ) was set to zero, that is N+
= i − inf{j |

g+

j = 0} and similarly for N−.
The performance of the Cusum test is expressed in terms of the so-called Average Run Lengths (ARL): ARL0 denotes the

average number of samples between false detections when no change has occurred; ARL1 denotes the average number of
samples to detect a change when it does occur. Ideally, ARL0 should be large, while ARL1 should be small. Both ARLmeasures
are affected by the design parameters H and K . To achieve good performance, the suggested values in stationary time series
are K =

∆

2 , where∆ is the minimum shift to be detected, and H = 5σy, where σy is the time series standard deviation [6].
In these conditions characterized by stationarity and constant variance of time series, the choice of K =

∆

2 has been shown
to provide near minimal ARL1 for a wide range of threshold values H , while H = 5σy guarantees ARL0 = 470 for a shift of
∆ = σy, which is typically considered as a reference value.

There are several techniques to compute ARL0 and ARL1. In this paper, we consider the Siegmund approximation that
combines simplicity and efficacy [27].

In Fig. 5 we plot ARL0 and ARL1 (∆ = σy, K = ∆/2). As shown in this figure, the performance of the Cusum algorithm is
heavily dependent on the ratio H/σy. Let us consider first a fixed standard deviation σy and let us vary the threshold value
H . As expected, for larger values of the threshold H , it is more difficult to incur in false detections (that is, it is more difficult
that perturbations of gi exceed the threshold) at the cost of an increasing detection delay ARL1 since gi needs to attain larger
values for detection. From the same figure, we can also observe that, by increasing the threshold H , the false detection rate
(which is inversely proportional to ARL0) decreases exponentially fast at the expense of higher ARL1.

Let us now fixH and let us vary the standard deviation σy. The key observation here is that the performance of the Cusum
rapidly degrades as σy increases (smaller values ofH/σy), since the false detection rate increases exponentially fast. Observe
that this could be compensated by using a large value of H which, on the other hand, has a negative impact on detection
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Fig. 5. Average run length,∆ = σy .

delay which, in on-line operation, must be kept as small as possible. As a consequence, in a non-stationary context whereby
the variance can exhibit significant variation over time, we should not rely on a fixed set of parameters.

4.2. The online adaptive Cusum detector

The basic Cusum algorithm is the best choice for statistical quality control of many processes characterized by stationary
time series [6]. Unfortunately, it cannot be directly applied to online state change detection in Internet-based systems. First
of all, the Cusum algorithm requires knowledge of the stationary state value µs against which measuring the time series
deviations. Our experience shows this does not apply to computer system resource dynamics: CPU, disk and network usage
dynamics are clearly non-stationary with respect to all relevant statistics, where the mean value and standard deviation
vary over time. Second of all, the non-stationary behavior prevents the possibility of setting the design parameters H and K
that can guarantee good performance over time. This is a critical issue because, as we have seen, for any fixed value of H the
Cusum performance rapidly degrades as the time series standard deviation σy increases.

In this section,wepropose a version of the Cusummodel thatwe callAdaptive Cusum, capable of detecting state changes in
face of the non-stationary characteristics of the continuous data stream. The proposed algorithmaims to solve the limitations
of the baseline Cusum algorithm outlined above as follows:

(1) we replace the reference state value µs by an adaptive estimation µi of the time series mean;
(2) we replace the standard deviation σy by an online estimation σi of it ;
(3) we dynamically adjust the thresholdH as to provide a target ARL0 performance in spite of high and possibly time varying

variances.

The proposed Adaptive Cusum-based detector consists of two components: an Exponential Weighted Moving Average
(EWMA) filter that tracks the slow varyingmean, and a two-sided Cusum test with varying thresholds for detecting relevant
state changes. We consider the following tracking EMWA filter:

µi = αyi + (1 − α)µi−1 (10)

where 0 < α ≤ 1 is typically set to 1/(1 + 2Π ∗ cf ) and cf is the cutoff frequency of the EWMA filter [28].
The time series variance σy is in general unknown and varying over time. We resort to a widely adopted approximation

of variance that, for the sake of simplicity necessary in an online context, basically replaces the standard deviation σy with
the mean deviation E[| y − E[y] |] computed over time [29]:

σi = α | yi − µi | +(1 − α)σi−1 (11)

where 0 < α ≤ 1 is the same as in (10).
By setting a suitable value for ARL0 so to guarantee good performance in terms of low false detections, we are able to

dynamically adjust the value of the threshold H∗ to reflect the variation of the data stream variance. This keeps a desired
performance of the state change detector. The computation ofH∗ for the desired ARL0 is carried out by a numerical inversion
of the Siegmund approximation [27], where the parameters are set as following: K =

∆

2 , where ∆ is the smallest shift we
want to detect (state changes smaller than∆ are accounted for byµi which tracks the state). Hence, to evaluate H∗ we use:

ARL+/−

0 =

e
∆
σi
( H

∗

σi
+1.166)

−
∆

σi


H∗

σi
+ 1.166


− 1

∆2

2σ 2
i

. (12)

The resulting curve is plotted in Fig. 6(a) where the target run length is set to ARL0 = 1000. As expected, H∗

increases significantly as a function of σi. We can compute a closed form approximation of the curve through a polynomial
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(a) Adaptive threshold H∗ . (b) ARL1 .

Fig. 6. Adaptive threshold H∗ and average Run Length ARL1 as a function of the time series variance (target: ARL0 = 1000).

approximation. For ARL0 = 1000, we obtained a good approximation with the following 3rd degree polynomial:

H∗(σi) = −1.3645σ 3
i + 10.3031σ 2

i + 3.1860σi − 0.2882 (13)

The detection rule is provided by modifying (6) and (8) as following:

g+

0 = 0 (14)

g+

i = max{0, g+

i−1 + yi − (µi + K+)} (15)

g−

0 = 0 (16)

g−

i = max{0, g−

i−1 + (µi − K−)− yi} (17)

where µs is replaced by the adaptive estimation of the state µi. A state change is detected whenever g+

i or g−

i exceeds the
threshold H∗. When a change occurs, the online estimation of the stateµi is updated through the online implementation of
(10):

µi =


µi−1 + K +

g+

i

N+
if g+

i > H∗

µi−1 − K −
g−

i

N−
if g−

i > H∗

(18)

This adaptive version of the Cusum algorithm we have presented is able to deal with non-stationary time series. It does
so by adapting the threshold H∗ to the online estimate of the time series standard deviation, to guarantee acceptable level
of false detections. Clearly this comes at a cost. In Fig. 6(b) we also plot the ARL1 of the Adaptive Cusum as a function of σi.
ARL1 is a function of H∗, which in its turn, in our scheme, is a function of σi. As expected, ARL1 grows for increasing values
of σi. This can be explained by observing that for higher values of σi the algorithm requires higher values of the threshold
H∗ to guarantee a desired level of false detection rate. The higher values of the threshold H∗ translate into higher detection
delays (see Fig. 5).

As confirmed by our experiments, because of the high variance that characterizes time series related to Internet-based
servers, the Adaptive Cusum algorithm alonemight not be sufficient to guarantee good detection performance. To overcome
these limitations, we combine our novel change detection algorithmwith a data representation obtained by the rectification
wavelet algorithm that should reduce the noise/perturbations from the measurements and improve the change detection
performance. We discuss it below.

4.3. Wavelet-based denoising

The performance of the adaptive Cusum algorithm is negatively affected by high variability in the original time series.
Hence, we have to reduce the amount of noise/perturbation through some rectification algorithm. There are many existing
techniques which can be broadly classified into linear and non-linear methods. Linear filter-based methods are widely
adopted for their ease of use and computational efficiency. Unfortunately, they are single scale by nature, that is, they are
simple low pass filters. As a consequence, if a time series contains features at multiple scales, linear filters must tradeoff the
extent of noise removalwith the quality of the retained features [17]. In our context, thiswould either result in reduced noise
removal and toomany false detections or in excessive smoothingwhichwould nullify the effectiveness of the overall change
detection scheme. Non-linear methods, inherently multiscale, exhibit better performance than the linear counterparts. In
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particular, wavelet-based methods have been shown to be nearly optimal for various error norms and smoothness of the
resulting time series [18]. Wavelet denoising exploits the use of a orthonormal basis localized both in space and frequency
which allows us to reduce/remove noise without smoothing the time series features.

In this section we describe the rectification phase we adopt before the application of our adaptive state change detection
model. In otherwords, to improve the performance of the change detection algorithm,we find it better to consider a rectified
data representation {x} [17] than the original data stream {y}. Here, {x} retains the significant features of the original data but
removes (most of) the variability that can be ascribed to short-term perturbations. We regard {x} as the data representation
of the monitored process obtained through an online version of the wavelet model, and we apply state change detection
rules based on the adaptive version of the Cusum algorithm to the rectified time series {x}. We refer to an online version of
the wavelet-based denoising/rectification [17], that is a powerful method for filtering/rectification, and use it as a basis
of our online data representation. Rectification based on the wavelet transform [16] is able to isolate and remove the
perturbations that affect themonitored processes. As observed above, the reason for this result is that it uses an orthonormal
basis localized in space and frequencywhile the traditional solutions based on exponential smoothing techniqueswork only
in the frequency domain.

We start giving a definition of the wavelet transform, commonly used in offline contexts, that represents a time series
as the sum of a shifted and scaled version of a base wavelet functionψ and a shifted version of a low-pass scale function φ.
With a proper choice of the wavelet and scale functions, the resulting families of functions are:

ψmk(n) =

√

2−mψ(2−mn − k) (19)

φmk(n) =

√

2−mφ(2−mn − k) (20)

where m and k are the dilation and translation parameters, respectively, from an orthonormal basis. A time series {y} can
be conveniently rewritten as follows:

yi =

n2−L
k=1

aLkφ(i)+

L
m=1

n2−m
k=1

dmkψmk(i) (21)

where aLk is the k-th scaling function coefficient at the coarsest scale L, dmk is the k-thwavelet coefficient at scale k, andn is the
time series length. The coefficientsm and k are computed by the inner product of {y} with the base functions. Computation
of the transform and its inverse can be done in O(n). As indicated in [17], in our implementation we set the coarsest scale
L equal to 5 if the time series is perturbed by white noise, L = 4 otherwise. A key feature of this representation is that the
wavelet decomposition captures significant signal features in a few relatively large coefficients, while perturbations result
uncorrelated. As a result, perturbations – and perturbations only – can be effectively removed by setting equal to zero the
wavelet coefficients smaller than a threshold specified below.

Summing up, we obtain the data representation {x} of the original time series {y} through the following steps:

(1) compute the wavelet transform of the original time series {y}. We use the standard Haar function [30] as a base wavelet,
which consists of a simple rectangular impulse function;

(2) set to zero the wavelet coefficients which are lower than a suitable threshold tm where m is the dilation parameter. As
indicated in [17], we set the threshold tm = σm

√
2 log nwhere σm =

1
0.6745median{|dmk|};

(3) compute the inverse wavelet transform to obtain {x}.

This rectification technique has been proved to be superior to other approaches [18] but it can only be applied on offline
operations. Since this would be not acceptable for real-time operations, we consider the online version proposed in [17]
where, at each step i, the rectified value xi is computed using only past values as follows:

(a) consider the sub-sequence {yi} = (yi−M+1, . . . , yi) of maximum dyadic length, e.g., withM = ⌊log2 i⌋;
(b) compute the rectified sequence (z1, . . . , zM) of the sub-sequence {yi} using steps 1–3 above;
(c) set xi = zM , e.g., set the actual rectified value equal to the last value of the rectified sequence computed at step (b).

This online version can be computed in O(n log n) steps (see [17] for details) and it is therefore suitable to efficient
implementations that are required by real-time management systems.

The overall scheme which combines the wavelet-based rectification phase described in this subsection and the adaptive
change detection phase described in Section 4.2 is summarized in Fig. 7. The original measurements {yi} are fed to
the rectification phase which produces the rectified data representation xi. This is passed to the change detection phase
implemented by the Adaptive Cusum algorithm, which consists of a standard deviation estimator that adaptively computes
the Cusum threshold H∗, an EWMA filter to estimate the time series meanµi, and the Cusum algorithm itself which outputs
the change detection events.
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Fig. 7. Schematic view of the proposed methodology.

5. Other detection algorithms

The choice of the most appropriate model for state change detection depends on several factors, among which the
application context and the statistical properties of the time series are the most important. These factors guide the choice
of the detection rule and the data representation technique most appropriate to the state change detection model. As the
focus of this paper is on state change detection algorithms working online in the context of Internet-based systems, many
existingmodels cannot be considered for comparison because they canwork just offline. Hence, as a term of comparison, we
consider three popular classes of models that can be applied to online contexts: threshold-based model [20], Exponential
Weighted Moving Average (EWMA) [6], and baseline Cusum [8].

The second important element is that the considered data streams are characterized by a high variability to the extent
that, for a fair comparison, all considered algorithms work on a filtered data representation instead of raw data. To this
purpose, we consider three rectification techniques: Exponential Weighted Moving Average (EWMA) [6], Kalman filter [12]
and wavelet [17]. The combination of state change detection algorithms and filtering methods allows us to consider the
following five detectors:

• EWMAn-Threshold (Section 5.1).
• EWMAn-EWMA (Section 5.2).
• Kalman-baseline Cusum (Section 5.3).
• EWMAn-baseline Cusum (Section 4.1).
• Wavelet-baseline Cusum (Section 4.1).
• Wavelet-adaptive Cusum (Section 4.2).

5.1. EWMAn-Threshold detector

Threshold-based models are commonly applied to Internet-based systems to support many real-time management
algorithms [31–33]. The threshold-based detector uses a data representation xi of the measurements that filters them
through an exponential weighted moving average. It is defined as: xi = λyi + (1 − λ)xi−1, where 0 ≤ λ ≤ 1 (a value
is λ =

2
n+1 [6]) and the starting representative state value is the mean of n time series values, that is, µs =

n
i=1(yi)/n.

On the basis of the chosen number of n past values, we denote the data representation technique as EWMAn. We consider a
detection based on a single threshold [20]. The detection rule compares the deviation among the value of xi and the estimated
meanµs to a statistical threshold set equal to∆, that is, the smallest shift to be detected. Therefore, the considered detection
rule is:

detection rule =


state change, if |µs − xi| ≥ ∆

no state change, otherwise. (22)

When a state change is detected, µs is updated to the current value of the data representation xi. The performance of the
threshold-based detectors depends on the choice of the threshold value. There is no theoretical support for it, and the right
choice of the threshold value completely depends on the application context and the workload characteristics. The quality
of the threshold-based detectors tends to worsen when working on time series with high variances, that are responsible for
many false positive detections.
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5.2. EWMAn-EWMA detector

The Exponential Weighted Moving Average (EWMA) is largely used to detect state changes in control charts [6] that are
tools to determine whether a process is in a stable statistical control. The data representation xi is an exponential weighted
moving average computed on n past values. This algorithm detects a relevant state change each time the shift amongµs and
xi overcomes a threshold depending on∆, on the standard deviation σy of the time series and on the cut-off frequency λ of
the EWMA data representation. The detection rule is defined as:

detection rule =

state change, if |µs − xi| ≥ Mσy


λ

2 − λ
no state change, otherwise

(23)

whereM is the length of the control limits and depends on theminimum shift∆ to be detected.µs is set to the current value
of the data representation xi each time the model detects a state change.

The EWMA detector is a good model when small shifts have to be detected [6]. In these conditions, the performance of
the EWMA is similar to that of the baseline Cusum. Otherwise, when the state change consists of a large shift, the quality
of the EWMA tends to decrease [6]. Moreover, the EWMA-based detectors are characterized by a tradeoff between the
false positive detections and the number of false negative detections. A detector using a small set n of past values offers a
more reactive data representation and tends to maximize the number of true positive detections at the cost of some false
positive detections. Increasing the number n of considered past values, the data representation becomes smoother and
should decrease the number of false positive detections at the cost of some false negatives. For this reason, in our context it
is hard to find an n value able to provide reliable and efficient performance for time series with time-varying characteristics.

5.3. Kalman-baseline Cusum detector

State change detection models with the Kalman filter as data representation and the baseline Cusum as the detection
rule are widely used in literature [7,34]. The traditional implementation of the Kalman filter requires the knowledge of the
system state model, which is impossible to define in the Internet-based context due to its non-stationary and unpredictable
behavior [9]. For this reason, we consider a simplified version of the Kalman filter, as presented in [12]. The considered data
representation algorithm, namely BART, combines a version of the Kalmanmodel for filtering the bandwidthmeasurements
with a change detection model based on the Cusum test. The Kalman filter estimates the data representation xi as follows:

xi = xi−1 + Gi(yi − Dxi−1) (24)

where Gi is the Kalman gain, yi is the measured quantity and the D matrix represents its one step model. A Cusum based
algorithm is then applied to xi to update quickly the system state valuewhen a state change is detected. Thismakes it feasible
to overcome the tradeoffs regarding speed of adaptation to changes versus stable estimation. The BART algorithm can be
directly applied in our contexts. We use the model parameter values that are tailored in [12].

The output of this algorithm is used as the data representation for the baseline Cusum detection rule. The quality of this
detection model is conditioned by the ability of the BART algorithm tomaintain a stable estimation of the state, through the
choice of the statistical threshold H and of the slack value K that represents the minimum deviation that the detection rule
of the baseline Cusum accounts for. The BART data representation tends to reduce significantly its quality in non-stationary
conditions and when the time series variance increases because it updates continuously its state also during periods of
stability. This tends to cause a high number of false detections.

6. Performance results

In this section, we present the main performance metrics (Section 6.1). Then, we evaluate the quality of the proposed
online detection model in different time series conditions carried out by modifying several parameters of the original time
series in terms of variance and perturbations (Section 6.2).

6.1. Performance metrics

The detection quality of the state change detection algorithms is evaluated in terms of the well known metrics recall,
precision [35] andmean delay for detection [7].

We define recall as the fraction of detections that are relevant to the time series and that are successfully retrieved:

recall =
TP

TP + FN
(25)

This measure can be considered as the probability that a change is successfully detected by the algorithm. To achieve a
recall value equal to 1, the detection algorithmmust signal all relevant changes. The value of the recall alone is insufficient,
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Table 1
Recall - ρy = 0.

σy EWMA5 EWMA5 EWMA10 EWMA5 Wavelet Kalman EWMA5 Wavelet
Threshold EWMA EWMA Baseline Cusum Baseline Cusum Baseline Cusum Adaptive Cusum Adaptive Cusum

0.1 1 1 1 1 1 1 1 1
0.2 0.97 1 1 1 1 1 1 1
0.3 0.96 1 1 1 1 1 1 1
0.4 0.92 1 1 1 1 1 1 1
0.5 0.89 1 0.98 0.99 1 1 1 1
0.6 0.83 0.99 0.87 1 1 1 1 1
0.7 0.85 0.95 0.31 1 1 1 1 1
0.8 0.92 0.88 0.02 1 1 1 0.99 1
0.9 0.94 0.71 0.01 0.99 1 1 0.99 1
1 1 0.64 0.01 1 1 1 1 1

because it must be supported by some information related to the number of false detections. This is measured by the
precision, that is the fraction of relevant detections:

precision =
TP

TP + FP
(26)

where (TP + FP) is the total number of detections. The precision gives information on the ability of a detection algorithm
to limit false state change detections. A precision equal to 1 means that the algorithm detects only relevant changes, while
low precision values are caused by a detection algorithm that signals many false state changes.

A tradeoff between recall and precision values exists. These two metrics can be combined into one measure, namely the
F − measure, that gives a global estimation of the detection quality. The F-measure is the weighted harmonic mean of the
precision and recall, that is,

F − measure = 2
precision ∗ recall
precision + recall

(27)

An F-measure value close to 1 denotes a good detection quality, while it is lower for detection algorithms affected by
false positive and false negative detections.

The mean delay for detection is related to the ability of an algorithm to detect a state change when it actually occurs. It
quantifies the time required for the detection of a new state through the distance between the sample at which the model
signals a state change and the actual sample of change in the state representation, and computes the mean over all the state
changes. For example, let us consider a time series with Y state changes. Let [s1, . . . , sY ] be the actual samples of change
and [ŝ1, . . . , ŝY ] the samples at which the model detects the changes. The mean delay for detection is defined as:

mean delay =

Y
i=1
(ŝi − si)

Y
(28)

Good detection algorithms should minimize the mean delay for detection.

6.2. Detection quality

As we are interested in online detections of changes in non-stationary, unpredictable time series arising from real
application contexts, in this section we evaluate the detection quality of the proposed algorithm for a wide range of time
series based on emulated profiles deriving from real measures. We consider time series with a relevant increment of their
values followed by a proportional decrement as in [36]. To facilitate the analysis and algorithm comparisons, the profile is
normalized so that state increases/decreases are denoted by a unit value and the model parameter values are set to provide
the best results in every considered time series.

As expected, all detection algorithms tend to diminish their detection quality for increasing variability of the time series.
It is important to apply the detection algorithms on time series characterized by different levels of variability. As described
in [37,38], themost important statistical properties that characterize a time series are the standard deviationσy, and the data
correlation index ρy. σy measures the dispersion of datawhile ρy measures the dependence of perturbations on the behavior
of time series values. To this purpose we evaluate the performance metrics of the detection algorithms as a function of σy
and for ρy set to 0. The recall and precision results for all considered algorithms and for several σy values are reported in
Tables 1 and 2, respectively.

Table 1 shows that when the dispersion is low (σy ≤ 0.5) all the considered algorithms achieve recall values close to
1. This means that the algorithms are able to detect all relevant state changes, with the exception of the threshold-based
algorithm. When the dispersion increases (σy > 0.5), the algorithms using EWMA as a detection rule (i.e., EWMA5-EWMA
and EWMA10-EWMA) worsen significantly, as can be seen from their recall values. They risk being completely unreliable
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Table 2
Precision - ρy = 0.

σy EWMA5 EWMA5 EWMA10 EWMA5 Wavelet Kalman EWMA5 Wavelet
Threshold EWMA EWMA Baseline Cusum Baseline Cusum Baseline Cusum Adaptive Cusum Adaptive Cusum

0.1 1 0.23 0.31 1 1 1 1 1
0.2 0.33 0.43 0.50 0.99 1 1 1 1
0.3 0.13 0.50 1 0.95 1 1 1 1
0.4 0.08 0.97 1 0.89 1 0.99 1 1
0.5 0.06 0.98 1 0.77 0.99 0.98 0.99 0.99
0.6 0.05 0.81 1 0.65 0.90 0.87 0.92 0.96
0.7 0.05 0.7 1 0.50 0.85 0.72 0.87 0.96
0.8 0.05 0.61 1 0.37 0.80 0.58 0.73 0.93
0.9 0.04 0.53 1 0.29 0.73 0.49 0.64 0.87
1 0.04 0.52 1 0.25 0.67 0.39 0.55 0.84

Fig. 8. F-measures.

in highly variable contexts, as they do not detect many state changes. Even in time series with an intense data dispersion,
the threshold and Cusum-based algorithms have good recall values (>0.9), that is, they detect all relevant state changes.
However, if we also consider the precision results, we notice in Table 2 that the threshold-based method is very sensitive
to the data variations of the time series: although it detects all state changes, this is accompanied by a high number of
false positives, as confirmed by the low precision values of the EWMA5-Threshold. All Cusum-based algorithms are able to
achieve good precision in time series characterized by a data dispersion σy ≤ 0.5. In more variable contexts (e.g., σy > 0.5),
only the proposed wavelet-Adaptive Cusum provides a high detection quality by achieving always a precision ≥0.84.

Fig. 8 reports the F-measure as a function of the standard deviation σy for all considered detection algorithms. This
shows the combined effect of recall and precision. With the exception of algorithms based on the EWMA detection rule,
the algorithm performance worsens for increasing values of σy. Fig. 8 shows that the wavelet-Adaptive Cusum algorithm
achieves the best F-measure values for every σy. For example, when σy = 1, the F-measure of wavelet-Adaptive Cusum
remains consistently above 0.9, even though EWMA Adaptive Cusum, the best existing online detection algorithm, has
an F-measure of only 0.7. The threshold-based method is characterized by an exponential decay of the detection quality
for increasing values of σy. This behavior reveals that a similar algorithm cannot be applied in non-stationary and non-
deterministic contexts. For small standard deviations, the EWMA5-EWMA and EWMA10-EWMA improve the F-measure
until σy = 0.5; beyond this, their F-measure decreases. This is due to their inertia limit that, together with the F-measure
degradation for high σy values, highlights that the performance of the EWMA-based algorithms are unacceptable because
they are too sensitive to the statistical characteristics of the time series and to the choice of algorithm parameters. Existing
Cusum-based methods (EWMA5-Cusum and Kalman–Cusum) are characterized by a small decay of the F-measure for low
values of σy. On the other hand, the F-measure decreases faster when σy > 0.5. These results confirm that popular Cusum-
based algorithms do not work well in online contexts related to system resource measures of Internet-based systems.
Instead, combining the Cusum detection rule with a data representation based on the wavelet, it is possible to contain
this limit as confirmed by the slow decay of the F-measure for high σy values.

We have to consider also the mean delay results, that are reported in Fig. 9 for all the considered algorithms. In Fig. 9, we
plot the mean delay for detection for increasing values of σy. An expected trait of all the state change detection algorithms
is the increase of the mean delay for detection, as a consequence of higher values of σy. All the algorithms but three are
characterized by similar and low mean delay values. The EWMA10-EWMA, EWMA5-EWMA model and Kalman–Cusum,
instead, are characterized by significant higher delays. In particular, the EWMA10-EWMA is affected by a mean delay of
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Fig. 9. Mean delay for detection.

60 samples in theworst case. This result shows that this algorithm is inadequate to support real-timemanagement decisions.
Moreover, it confirms that the choice of the data representation technique is crucial for online state detection models. In
highly variable contexts, just the proposed wavelet-Adaptive Cusum provides an efficient tradeoff between the detection
quality, expressed in terms of F-measure, and the delay.

Next, we examine the effects of the correlation ρy of the data component on the detection quality by considering different
correlation indexes (ρy = {0, 0.1, 0.2, 0.3}) for two dispersion values (σy = {0.6, 0.9}). Fig. 10 reports the F-measure values
of the four Cusum-based algorithms that in Fig. 8 show the best results (wavelet-Adaptive Cusum, EWMA5-Adaptive Cusum,
Kalman–Cusum and wavelet-Cusum) and of the two algorithms based on EWMA detection rule (EWMA5-EWMA, EWMA10-
EWMA). The results confirm that the proposedwavelet-Adaptive Cusum algorithm improves the performance of all existing
detectors for every correlation index and any σy characterizing the time series. For quite high values of noise dispersion
(σy = 0.6), the wavelet-Adaptive Cusum algorithm always provides F-measures higher than 0.95. Its performance remains
acceptable also when dealing with more variable time series, to the extent that in the most chaotic context of intense
variance and strong correlation of the data component (σy = 0.9, ρy = 0.3) it improves by more than 50% the performance
of the best existing algorithm wavelet-Cusum. This result confirms the importance of using an adaptive detection rule in
non-stationary and highly variable contexts. A second important result is that thewavelet-Adaptive Cusum algorithm is less
sensitive to the statistical characteristics of the time series with respect to any other detection algorithm. For a fixed value of
σy, the performance of the proposedmodel degrades slowlywith the increase the correlation index, thus demonstrating that
the detection quality of the wavelet-Adaptive Cusum is less affected by ρy than all the other Cusum-based algorithms. This
stiffness is quite useful in all real contexts characterized by highly variable, non-stationary and non-deterministic behaviors
of the measured data.

7. Experimental results

In this section, we apply the online detection models on measures related to system resources of real systems. In
these experiments, since for real traces we do not actually have a ground-truth to refer to, we need a mean to define the
representative state of time series and the occurrence of state changes. We adopted the following simple methodology1,
based on the cluster analysis. We start with an offline pre-processing of the monitored time series in which we remove all
perturbations bymeans of a non-causal low-pass filter. We then apply cluster analysis to compute the representative states.
We use a distance-based clustering based on the Quality Threshold clustering algorithm [39] and set a distance measure
among clusters/states equal to ∆, that corresponds to the minimum relevance of the change that a model has to capture.
For each state, we compute themean valueµ. The sequence of the mean values of the states {µ} and the respective samples
{s} to change to another state define the representative states of the time series.

In Fig. 11, we give an example of a real time series, representing the CPU utilization of a database server, and its
representative states and samples of change. By applying cluster analysis with∆ equal to 0.2 to the time series of Fig. 11(a),
we identify four representative states, defined by the following means values µ1 = 0.50, µ2 = 0.75, µ3 = 0.52 and
µ4 = 0.30 and samples of change s1 = 50, s2 = 100 and s3 = 160.

We evaluate the proposed state change detection algorithm on time series coming from server measures of an Internet-
based system hostingWeb sites with static, dynamic and secure content. For evaluation purposes, herewe report the results

1 We remark that in absence of a ground truth, any definition of representative state is arbitrary. Nevertheless, the proposed technique provided us
qualitatively very good results.
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(a) σy = 0.6. (b) σy = 0.9.

Fig. 10. F-measures.

(a) Time series. (b) Results of the quality threshold clustering.

Fig. 11. Representative state of a real time series.

Fig. 12. CPU utilization of an Internet-based server.

related to the measures shown in Fig. 12 referring to the CPU utilization of a machine hosting multiple guest servers. The
considered measures are 1-minute averages of the CPU utilization on a single server.

Weevaluate the representative state for the state changedetection algorithms through the offlinemethodologydescribed
above that determines relevant state changes at samples 50, 125, 200, 275, 350, 400, 475, and 550, evidenced by the
horizontal line in Fig. 12.

We report the results of the proposedwavelet-Adaptive Cusumandof the selected detection algorithms (EWMA5-Cusum,
Kalman–Cusum, EWMA5-EWMA and EWMA10-EWMA) described in Section 5.
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(a) Data representation. (b) State change detections.

Fig. 13. Wavelet-adaptive Cusum detector.

(a) Data representation. (b) State change detections.

Fig. 14. EWMA5- detector.

(a) Data representation. (b) State change detections.

Fig. 15. Kalman–Cusum detector.

Fig. 13(a), Fig. 14(a), Fig. 15(a), Fig. 16(a) and Fig. 17(a) show the curves of the online data representation generated by
each of the five algorithms. The respective (b) figures on the right report the occurrence of false positive detections (vertical
lines with a circle at the top) and true positive detections (vertical lines with a cross at the top). In this benchmark, we can
appreciate that the wavelet-Adaptive Cusum algorithm is able to achieve a data representation more smoothed than the
corresponding representations of the EWMA5-baseline Cusum, the Kalman-baseline Cusum and the EWMA5-EWMA and
similar to the EWMA10-EWMA.
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(a) Data representation. (b) State change detections.

Fig. 16. EWMA5-EWMA detector.

(a) Data representation. (b) State change detections.

Fig. 17. EWMA10-EWMA detector.

The EWMA5-Cusum, the Kalman–Cusum and the EWMA5-EWMA shown in Fig. 14(b), Fig. 15(b) and Fig. 16(b), detect
all state changes but their precision decreases due to a high number of false positive detections. This is a consequence
of their inability to maintain a stable data representation when the time series are non-stationary and highly variable. A
different behavior is shown by the EWMA10-EWMA in Fig. 17(b): it misses more than 60% of state changes. This is due to the
so-called inertia limit [6], that is, the inability to react quickly to time series changes when the size of the smallest shift to
detect is significantly higher than time series variance. As a consequence, the inertia limit strongly affects the recall quality.
These results show and confirm the tradeoff problem between the false positive detections and the number of false negative
detections that characterizes the EWMA-based detection rule.

On the other hand, the wavelet-Adaptive Cusum algorithm in Fig. 13(b) exhibits a precise detection also in contexts
characterized by multiple relevant changes and high variability. The proposed algorithm detects timely the state changes
and it is affected by just one false detection at sample 540. Nevertheless, after the false state change detection, the wavelet-
Adaptive Cusum algorithm is able to adapt immediately its data representation to the right stable state. This capacity of
self-recovery is one of the most important properties of the proposed algorithm that allows us to achieve always the best
results. We report a summary of the results shown in the previous figures in Table 3.

We now consider the problem of spiky time series. As an example, we consider the time series shown in Fig. 18, coming
from the data streams related to the CPU utilization of aWeb server. Themeasures exhibit a stable behaviorwithout relevant
state changes and are characterized by a lowvariance and by some spikes, such as at samples 170, 184, and 259. In Table 4,we
report the number of false positives signaled by the considered state change detection models. A reliable detection model
applied to this time series should not detect any relevant state change. However, in these conditions, only the wavelet-
Adaptive Cusum avoids wrong detections. This result is the consequence of the usage of a reliable data representation
rectified by spikes and perturbations and of the capacity of the proposed algorithm to preserve the stable state. On the
other hand, the traditional state change detectionmodels, such as the EWMA5-Cusum, Kalman–Cusum and EWMA5-EWMA,
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Table 3
Summary of experimental results.

Model TP FP FN

Wavelet-Adaptive Cusum 8 1 0
EWMA5-Cusum 8 16 0
Kalman–Cusum 8 11 0
EWMA5-EWMA 8 13 0
EWMA10-EWMA 3 3 5

Fig. 18. Spike time series.

Table 4
Time series characterized by spikes.

Detector False positive

Wavelet-Adaptive Cusum 0
EWMA5-Cusum 10
Kalman-Cusum 4
EWMA5-EWMA 8
EWMA10-EWMA 2

detect many state changes in the occurrence of the spike values, as shown in Table 4. The EWMA10-EWMA is able to limit
the number of false detections to 2 because of the inertia limit.

8. Conclusions

Most real-time management decisions in large Internet-based infrastructures, from load balancing to access control
to any autonomic-related control, rely on detection of relevant state changes of monitored system resources. In modern
Internet-based systems characterized by virtual machines hosting several interactive Web-based applications we have
observed that the data sets referring to system resource utilizations are characterized by non-deterministic and highly
variable behavior. In this context, it is very tough to decide whether a significant state change has occurred and to signal it
to the management framework. As existing online state change detectors do not work, we have proposed a new adaptive
algorithm that is specifically tailored to be integrated with real-time management in Internet-based systems. The proposed
algorithm combines for the first time an online version of the wavelet-based model to achieve a continuously adaptive
representation of the data flowing from the system monitors with an online adaptive version of the well known Cusum
statistical test as a detector.We demonstrate that the proposed algorithm is able to improve the performance of any existing
state of the art detector applicable at runtime. All experiments carried out on real andmodified time series demonstrate that
the proposed solution is robust and effective: it signals just relevant state changeswith very lownumbers of false detections,
and provides the precision of detection for any variability of the input data. The proposed algorithm is characterized by low
computational complexity and can be applied to thousands of data flows. Larger sizes of input require hierarchical or parallel
infrastructures for the evaluation.
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