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ABSTRACT
Management decisions to achieve peak performance opera-
tions, scalability and availability in distributed systems re-
quire a continuous statistical characterization of data sets
coming from server and network monitors. Due to the in-
creasing sizes of data centers and their continuous dynamic
changes, the traditional approaches that work on all data
sets in a centralized way are impractical. We propose a
strategy for data processing that is able to limit the analy-
sis of the large sets of collected measures to a smaller subset
of significant information for a twofold purpose: to classify
the collected data sets in few classes characterized by similar
statistical behaviors, to evaluate the dynamics of the overall
system and its most relevant changes. The proposed strat-
egy works at the level of server resources and of significant
aggregation of servers of the overall distributed system. Sev-
eral experimental results demonstrate the feasibility of the
proposed strategy that is validated in real contexts.

1. INTRODUCTION
Internet data centers are becoming quite complex infras-

tructures consisting of several distributed servers enhancing
virtualization capabilities and supporting several heteroge-
neous services that are characterized by varying demands,
and different performance and availability objectives. In
similar contexts, resource management systems have to ap-
ply multiple models for system dynamics evaluation includ-
ing anomaly detection, performance quality control, predic-
tion of future trends, estimation of expected capacity needs
(e.g., [27, 17]). Most management decisions are taken on the
basis of continuous analysis and characterization of data sets
coming from system monitors and referring to different re-
sources (e.g., CPU, processors, memories, storage elements,
virtual machines, network) and various metrics (e.g., uti-
lization, response time, throughput). Even in a medium-
sized data center, several thousands of resource data sets
may reach the management system that should analyze,
model and treat them at different temporal scales in order to
guarantee reliability, scalability, and to avoid performance
degradation and overloads. It would be possible to pass all
resource data collected by the system monitors to the man-
agement system only in the case of short data sets consisting
of few monitored samples. As this becomes impracticable
when the data sets are collected over long periods, it is nec-
essary to characterize all (and only) the relevant data carry-
ing on useful information. This paper gives a contribution
in the direction of simplify the complexity of managing huge
amounts of heterogeneous and highly variable data sets. The

idea is to extract a concise representation of how the most
important components and sets of components are acting
and to signaling main changes to the management system
of a modern data center consisting of distributed servers.

Data collected from resource monitors generate highly
heterogeneous sets (e.g., [38, 2, 3, 7]): some of them are
characterized by periodic or linear behaviors; others present
spikes and noises so high that any immediate application of
models for trend, anomaly detection, and forecast analysis
is impracticable. The first goal is to characterize resource
heterogeneity in some statistical classes that can guide man-
agement decisions. In particular, models and algorithms
for performance management, prediction, capacity planning,
anomaly detection can work if they can distinguish random
from deterministic patterns in data sets [10, 3, 38, 6]. The
algorithms for resource characterization that are oriented to
analyze the entire data set of each server (e.g., [36, 25, 34,
13]) are impracticable. Other approaches that aim to re-
duce the dimension of the problem, such as [37, 28, 2], are
specific for data mining contexts or are oriented to problems
different from ours, such as correlation analysis and anomaly
detection. We aim to reduce the analysis of the huge amount
of monitored data to focus the investigation on a subset of
relevant information by selecting just the most important
data sets. In this study, the importance is a measure of the
impact that each resource has on the overall system behav-
ior. We use the results of data set reduction as a mean to
pass just relevant statistical information to a management
system that is facilitated in the application of the most suit-
able decision strategy.

• We take advantage of data heterogeneity by distin-
guishing deterministic from random behaviors of servers.
The idea is that former data sets can be used for tak-
ing reliable decisions and applying adequate models
for forecasting and anomaly detection to the specific
server; the latter sets can be used for detections only
after the application of some filtering model.

• We adopt a similar analysis at the level of subsystems,
that is, significant subsets of servers, where the context
defines the right partition.

• We evaluate the dynamics of the system by signaling to
the management framework just the most significant
changes in system dynamics.

The remainder of this paper is structured as follows. Sec-
tion 2 presents the foundations of the proposed strategy.
Section 3 describes how we select the most relevant from the



least important information. Section 4 presents the method
for the statistical characterization of the resources. Section 5
analyzes system dynamics as a basis for signaling just the
most relevant changes to the management system. Section 6
evaluates the computational complexity, while in Section 7
we analyze related work. Concluding remarks and future
work are presented in Section 8.

2. PROPOSED STRATEGY
The proposed strategy is oriented to the selection and the

statistical characterization of the resources of data center’s
servers. The measures related to system resources are typi-
cally huge in size because they refer to long monitoring pe-
riods, variable and heterogeneous. Hence, the first goal for
management purposes is to discriminate between relevant
and less relevant information. We consider variability as the
main statistical property that quantifies the degree of activ-
ity of a process and its importance in overall system behavior
as in [5]. The index of variation of the data sets related to
each monitored process is denoted by the energy. We use
this measure as a means to distinguish between data sets
carrying relevant and not-relevant information. In order to
reduce the dimensionality of a data set analysis and to con-
sider just the most relevant data sets in terms of energy, we
refer to the Principal Component Analysis (PCA) model [1]
that, unlike other models for dimension reduction [16, 26,
24, 19], is able to express the intrinsic structure of a data set
in terms of variance and requires no prior knowledge about
statistical properties of data sets.
By considering only the relevant sources of information,

we characterize the server statistical behavior emerging from
the monitored data. Only relevant information is passed to
the statistical analyzer that aims to classify data sets in one
of the following classes:

• deterministic, presenting systematic trends and peri-
odic patterns that are predictable and possible to model;

• random, manifesting isolated spikes and/or stochastic
noises;

• negligible, giving a minor contribution to the overall
system activity.

This classification allows a management system to apply
the right model to the right data sets, as well as reducing
the complexity of system management with null or mini-
mum loss of information. The negligible category does not
carry meaningful information for system management. Its
contribution on system activity has a low impact and there-
fore a management framework can ignore data sets belong-
ing to this class. When a data set is characterized by a
prevalently deterministic behavior, a management system
can adopt several models for prediction, anomaly detection,
event identification. On the other hand, servers character-
ized by data sets with spiky and noisy behaviors complicate
management. These data sets require some preliminary ag-
gregation and filtering treatment before their utilization. In
the most difficult cases they result useless or unfeasible for
management even after the application of some data treat-
ments.
Unlike existing solutions for server characterization that

analyze each collected data set [36, 25, 34, 13], the proposed
solution classifies server behaviors by working on a subset

of information. Our approach, that is based on PCA [1],
aims (1) to extract from data sets the most relevant infor-
mation, where the importance is measured as a function of
the impact of each resource on the overall system behavior,
and (2) to focus the classification analysis on this smaller
subset of information. In this way, we are able to limit
the computational complexity of the analysis, and to allow
the integration of server characterization results with system
management frameworks operating in large data centers.

The proposed strategy achieves the above mentioned goals
through the steps outlined below, and detailed in the next
three sections of this paper.

1. Initial analysis. First, we evaluate the impact of each
data set collected by system monitors on the overall
system activity, so to distinguish relevant from not-
relevant sources of information (Section 3).

2. Server characterization. Considering only the rel-
evant sources of information, we then characterize the
server statistical behavior emerging from the moni-
tored data. We choose to classify the statistical be-
havior in three main classes. The idea is to focus the
analysis only to those classes that can facilitate system
management (Section 4).

3. Evaluation of system dynamics. The evaluation
of the system dynamics looks at the overall behavior
of the system. A significant variation in the behavior
of relevant sources of information denotes a significant
change in the system that is useful to signal for better
management (Section 5).

It is important to observe that a similar strategy can be
applied to evaluate the system dynamics of resources belong-
ing to groups of servers up to the whole system. By looking
at the overall energy of the system, we can dynamically dis-
criminate whether the system has a prevalent deterministic
behavior and therefore it is manageable, or if the system is
mainly driven by a random behavior that makes the system
hard to treat and to model. A significant variation in the
amounts of deterministic and random energies of the system
denotes a significant change in system activity that is use-
ful to signal for adapting management decision to changing
environments.

A final remark is in order. Since the proposed strategy
does not make any a-priori assumption on the statistical
properties of the data sets, as it is required by other ap-
proaches [6, 2], it can characterize any type of resource and
metrics, such as CPU utilization, memory and swap usage,
disk usage, network packet rate. In the present version,
it operates on homogeneous resource metrics belonging to
distributed servers belonging to the same data center. Ex-
tensions to heterogeneous resources are possible, but out of
the scope of this paper.

3. INITIAL ANALYSIS
In large data centers, the data sets collected from the mon-

itored system resources form a multivariate structure char-
acterized by multiple dimensions each consisting of several
samples. The proposed approach reduces the computational
complexity of the analysis when the number of samples is
huge with respect to the number of monitored resources
(that is, dimensions). In these large structures, a reliable



management decision requires a preliminary identification
of the most relevant information. A common approach is to
find a new coordinate space consisting of a lower dimension-
ality that is representative of the original space [18]. When
a structure can be approximated through a smaller number
of dimensions in a way that minimizes the error and the
loss of information, we can refer to the smaller number of
dimensions as the structure intrinsic dimensionality.
In literature, there are many reduction models to extract

the intrinsic dimensionality of system resource measures,
such as the Principal Component Analysis (PCA) [1], the
Correspondence Analysis [16], the Factor Analysis [26], the
Non-Negative Matrix-Factorization [24], the Independent Com-
ponent Analysis [19]. Among these algorithms, we choose
the PCA model because it is able to express the intrinsic
structure of a data set in terms of variance without requir-
ing any prior knowledge about the statistical characteristics
of data sets.
At time t, the sets of sampled measures originate a ma-

trixXt corresponding to the highly dimensional multivariate
structure. It is a n x p matrix, where n is the number of
considered samples (for example, n = 2016 if we consider
a five minutes sampling in a one week period), and p is
the number of considered system resource measures. Our
approach is more efficient than existing solutions when we
consider long monitoring periods where n > p. As resource
measures are statistically heterogeneous, it is useful to nor-
malize them as data sets characterized by zero mean and
unit variance, as suggested in [4]. The PCA is a coordi-
nate transformation method that maps Xt on a new set of
axes [18] called components. Calculating the components is
equivalent to solve the symmetric eigenvalue problem for the
matrix Ψt = XT

t Xt that is, a measure of the covariance of
the data sets deriving from samples. In practice, each com-
ponent vi is the i-th eigenvector computed from the spectral
decomposition of Ψt [4]:

Ψtvi = λivi i = 1, . . . , p (1)

where λi is the eigenvalue corresponding to the eigenvector
vi and represents the magnitude of the variation along each
component vi. Previous work uses the term energy obtained
as a sum of quadratic terms to quantify how well the eigen-
vectors describe the original data set [31, 28]. On the other
hand, we compute the energy by considering the output of
the PCA and evaluate the energy σi associated to the com-
ponent vi through the percentage of variation related to its
eigenvalue λi, that is, σi = λi∑p

j=1
λj

∗ 100. As Ψt is sym-

metric positive definite, its eigenvectors are orthogonal and
the corresponding eigenvalues are non-negative real num-
bers. By convention, the eigenvectors are unit norm and
the eigenvalues are arranged from large to small, so that
λ1 ≥ λ2 ≥ . . . ≥ λp.
In this new dimensional space, a dimension ui (i = 1, . . . , p)

is defined as a vector of size n obtained by the contribution
of the data set matrix Xt and of the component vi. As
suggested in [4], this vector is normalized to unit length by
dividing it by

√
λi. Hence, for each principal component vi

we have:

ui =
Xtvi√
λi

i = 1, . . . , p (2)

Through the above equation all server behaviors weighted by
vi produce one dimension of the transformed data. Hence,

the vector ui can capture the temporal variation common
to all server measures along the component vi. Since the
components are ordered with respect to their contribution
to the overall energy, u1 captures the strongest temporal
trend that is common to all server measures, u2 captures
the second strongest trend, and so on.

The energy characterizing each component is used to re-
duce the data dimensionality: we exclude the least energetic
components of the structure, that is, we ignore the less vari-
able components. There are several methods [21] to choose
how many components it is useful to retain and to exclude.
They include graphical approaches, such as the scree plot [8],
the quantitative tests based on PCA singular values [22], the
percentage of variability expressed by the principal compo-
nents [20]. In this paper, we pursue this last criterion by
determining in advance the amount of residual variability
that we want to tolerate and by excluding residual compo-
nents. A typical threshold [23] establishes that the cumu-
lated percent on variation expressed by the retained dimen-
sions should be higher than the 90-percentile. Our method
does not depend on the choice of this threshold, hence in this
paper we consider not-relevant the dimensions contributing
to the overall variance of the data set for less than 10%.

When a smaller set of r dimensions are relevant, we can
have interesting implications: Xt can be mapped on an r-
dimensional subspace of Rp, and r ≪ p is the intrinsic di-
mension of Xt. This result allows the method to distin-
guish between the relevant dimensions Ut = {u1, . . . , ur}
that are contributions shared by all resource measures on
the r principal components, and the not-relevant dimensions
Ut = {ur+1, . . . , up} corresponding to the least important
components in terms of system energy.

We validate the proposed approach by taking into ac-
count long data traces collected from a data center con-
sisting of distributed servers that support different types
of applications, including Web sites, databases, access con-
trols, CMS, mail server, management software. In this data
center, system monitors collect resource measures every five
minutes referring to CPU utilization, primary and secondary
memory-related metrics, network activities. For the sake of
simplifying a complex procedure, we limit our presentation
to a week of data sets referring to the CPU utilization of
50 servers hosting Web sites providing static, dynamic and
interactive content. These data sets originate a matrix Xt

with n = 2016 rows and p = 50 columns.
We initially evaluate the energy σi related to each di-

mension ui in order to identify how many dimensions bring
energy information to the data set. Figure 1 shows the cu-
mulative distribution of the energy provided by each dimen-
sion [11] by reporting for each dimension ui the proportion
of the energy related to the previous dimensions that is,
∑

j≤i
σj .

Thanks to the rapid growth of the distribution curve in
Figure 1, the 90-percentile of the energy of the overall system
is captured just by the first nine dimensions that contribute
to most server variability. In this example, our approach
evaluates the first 9 dimensions as relevant, while the other
41 dimensions are marked as not-relevant from the point
of view of the energy. This is an important result of the
proposed methodology applied to a real data center because
it confirms that, in terms of energy, the resource measures
all together form a structure with an intrinsic dimensionality
of r = 9, that is much lower than the original number (50)
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Figure 1: Cumulative distribution of energy.

of the considered set of data.
As a confirmation of this result, we evaluate the degree

of correlation between the original resource traces sampled
from the servers and the reconstructed data sets as a func-
tion of the number k of dimensions. We use the following
equation for reconstruction:

X
′
t ≈

k
∑

i=1

√
λiuiv

T
i , k = 1, . . . , p (3)

Figure 2 reports an example of the high correlation exist-
ing between original and reconstructed CPU utilizations of
three servers as a function of the considered dimensions (k
spans from 1 to 20). This figure evidences that the first 9
dimensions achieve a perfect positive linear correlation be-
tween original and reconstructed data sets for servers 7 and
11, and a very high correlation for server 3. These results
confirm that a PCA-based methodology can be applied to
identify the most relevant information for management de-
cisions in large data centers.
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Figure 2: Correlation coefficient between original
and reconstructed data sets as a function of the num-
ber of considered dimensions.

4. SERVER CHARACTERIZATION
The first application of the proposed methodology is to

provide a statistical characterization of the server behav-
iors as relevant and deterministic, relevant and random, or

negligible. For each data set corresponding to a server, we
propose an algorithm activated periodically and based on
the following steps. We consider the activation at a generic
time t. The contributions in terms of energy allow the al-
gorithm to distinguish between relevant dimensions Ut and
not-relevant Ut dimensions.

Then, we distinguish the relevant dimensions between cor-
related UC

t and low-correlated UL
t by evaluating the auto-

correlation function (ACF) of each relevant dimension Ut as
in [9] and in many other contexts (e.g., [3, 6]). A quick de-
crease of the ACF means that the observed dimension values
exhibit low (or null) autocorrelation. This is the case of di-
mensions capturing the random perturbations and/or spikes
varying in time and intensity in the system behavior. On
the other hand, a slow decay of the autocorrelation function
indicates that the dimension shows a dependency among its
values. The dimension typically exhibits trends, periodicity
and seasonal fluctuations due to the diurnal activity, as well
as the difference between weekday and weekend activity of
the system [9].

We use the classification of the dimensions to distinguish
three behavioral values for each data set referring to a server
resource. The idea is to add all the contributions for each
type of dimensions and then to evaluate the maximum of
them. This method is applied to each server resource k as
following.

• DSer
t [k] =

∑

j
vj [k], ∀j | uj ∈ UC

t denotes the con-
tributions provided by the relevant correlated dimen-
sions;

• RSer
t [k] =

∑

j
vj [k], ∀j | uj ∈ UL

t denotes the con-
tributions provided by the relevant low-correlated di-
mensions;

• NSer
t [k] =

∑

j
vj [k], ∀j | uj ∈ Ut accumulates the

contributions of the not-relevant dimensions.

For each server resource k, we evaluate the highest term
that is, MSer

t [k] = max{DSer
t [k], RSer

t [k], NSer
t [k]}. In such

a way, we can characterize each server resource on the basis
of its main behavioral value:

Server k =







Deterministic if MSer
t [k] = DSer

t [k]
Random if MSer

t [k] = RSer
t [k]

Negligible if MSer
t [k] = NSer

t [k]
(4)

It is important to compare the proposed strategy against
those obtained through other approaches that analyze each
monitored data set, such as [36, 25, 34, 13]. Existing models
require computationally expensive analyses to evaluate cor-
relation [9], probability distributions [14], and mean loads [12].
The complexity becomes excessive especially when each data
set consists of several entries, and it is even increased by the
necessity of applying some pre-filtering technique when the
measures are highly variable, as it is typical in the consid-
ered contexts.

For validation purposes, we consider again the data set
referring to the CPU utilization of the 50 servers introduced
in Section 3. We compare the classification results of servers
achieved by the proposed strategy and other approaches that
analyze each data set. The results of these models are re-
ported in the second column of Table 1. The results obtained
through the proposed approach are shown in the three Pro-
posed strategy columns. If we compare the classes with bold



indexes to the server characterization arising from the base-
line characterization reported in the second column, we see
a perfect correspondence of results. The proposed strat-
egy is able to identify the main statistical behavior of 50
servers through a classification and a statistical analysis of
only the most relevant 9 dimensions of the data set. On this
small set of dimensions, we do not need to apply any time
consuming filtering technique since PCA itself allows us to
isolate perturbations from data. Thanks to the dimension-
ality reduction, we can integrate the server characterization
with any decision support for system management in large
distributed systems.
Let us detail the steps of this algorithm applied to r = 9

relevant dimensions and 41 not-relevant dimensions. We ap-
ply the ACF to the r = 9 relevant dimensions. For server
characterization purposes, we need to be selective in the
choice of the correlated dimensions and we set a high cut-off
value of 0.8. The ACF gives that 5 dimensions are correlated
and 4 are low-correlated (Figure 3). The goal is now to deter-
mine which dimensions actually bring information to which
CPU traces of the data set. By evaluating the DSer

t , RSer
t

and NSer
t values, we compute the extent to which correlated

UC
t , low-correlated UL

t and not-relevant Ut dimensions are
present in the data set.
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Figure 3: Percentage of energy and classification of
the relevant dimensions.

The proposed strategy classifies the characteristics of the
server k through the three behavioral valuesDSer

t [k], RSer
t [k]

andNSer
t [k] without the need of applying multiple statistical

tests to all data sets. In the results reported in the Proposed
strategy columns of Table 1, each column highlights in bold
text the MSer

t [k] value for each server. This value denotes
the behavioral characterization that is assigned by the pro-
posed strategy. For example, the baseline analysis of the
server 3 computes a mean load utilization of filtered data of
6.39% that classifies it as a negligible server. Our strategy
reaches the same characterization through the evaluation of
only three behavioral values: a predominantNSer

t [3] value of
0.1866 characterizes the server as under-loaded, thus avoid-
ing the analysis and treatment of the entire data set.
In this paper we do not report all possible exploitations

of the proposed strategy. Just to give another example, we
observe that considering the amount of servers character-
ized by negligible activities offers a valuable information for

management optimizations. In our case study, we have that
20 over 50 servers are prevalently negligible, that is, mainly
underloaded during two weeks of observation. In a similar
context, a resource management system that logically pools
all server resources would increase the overall system uti-
lization and diminish operational costs by turning off some
unnecessary servers.

5. EVALUATION OF SYSTEM DYNAMICS
Several important problems related to system design and

management require a continuous evaluation of the dynam-
ics of the overall system or of significant parts of it when the
data center is so huge that global measures are unfeasible or
useless. In this paper, we use the term system to refer to the
overall set of servers or to a suitable subset of homogeneous
server resources. (The extension to heterogeneous resources
is left to future work).

The motivation of a system’s view comes from the obser-
vation that performance is affected not only by each server,
but also by the interactions of components of multiple servers
interacting and competing for the same resources. As a con-
sequence, the system dynamics are the result of the super-
imposition of several contributions that often are not inde-
pendent.

The main goal of our system dynamics evaluation is to
define whether the behavior of the energy of the system is
mainly driven by deterministic or by random behaviors, and
to continuously check how this energy evolves at different
evaluation steps. (We exclude the case of a data center that
has a predominant component of negligible information in
terms of energy because it would represent an unrealistic
case of a poorly managed set of resources). In large data
centers, where continuous changes and migrations of virtual
machines are at the norm, we want to detect only relevant
changes in system dynamics and not minor instabilities, thus
preventing the activation of management procedures when
there are changes that affect the behavior of few servers, but
do not have an impact in overall system operations.

Our model evaluates periodically the proportion of the to-
tal system energy by focusing on the r most relevant dimen-
sions (Ut) emerging from Section 3 instead of considering
each component of the data set. For each time interval t,
the proposed algorithm is based on the following steps.

1. We consider the data set of resource measures Xt col-
lected over the time period [t− 1, t].

2. As for server characterization, we distinguish the rel-
evant dimensions Ut between correlated UC

t and low-
correlated UL

t dimensions.

3. We compute two values, D
Sys
t and R

Sys
t , that sum

up the energy σ associated to the correlated and low-
correlated dimensions, respectively:

D
Sys
t =

∑

j
σj , ∀j | uj ∈ U

C
t (5)

R
Sys
t =

∑

j
σj , ∀j | uj ∈ U

L
t (6)

D
Sys
t and R

Sys
t values capture the quantity of variation

that resource measures Xt distribute between the de-
terministic and the random dimensions, respectively.



Analysis of Proposed strategy Analysis of Proposed strategy

each data set each data set

k Behavior D
Ser
t R

Ser
t N

Ser
t k Behavior D

Ser
t R

Ser
t N

Ser
t

1 Random 0.2211 0.2379 0.0181 26 Negligible 0.0569 0.0402 0.1912
2 Negligible 0.0006 0.0009 0.1297 27 Negligible 0.0071 0.0186 0.2028
3 Negligible 0.0443 0.0334 0.1866 28 Negligible 0.0220 0.0268 0.2112
4 Random 0.0391 0.3012 0.1185 29 Random 0.0432 0.1261 0.1127
5 Negligible 0.0186 0.0116 0.1955 30 Random 0.0207 0.2498 0.0137
6 Negligible 0.0162 0.0128 0.1938 31 Deterministic 0.3955 0.0846 0.0927
7 Random 0.0615 0.2379 0.0181 32 Deterministic 0.4183 0.2324 0.0277
8 Negligible 0.0492 0.0370 0.2030 33 Deterministic 0.3037 0.2695 0.0293
9 Random 0.1160 0.2206 0.1236 34 Random 0.2114 0.2388 0.0166
10 Negligible 0.0005 0.0005 0.1309 35 Negligible 0.0478 0.0410 0.1858
11 Deterministic 0.3539 0.1612 0.0540 36 Negligible 0.0387 0.0353 0.2114
12 Negligible 0.0099 0.0049 0.1960 37 Random 0.0275 0.3535 0.0616
13 Negligible 0.0139 0.0122 0.2052 38 Negligible 0.0236 0.0842 0.1214
14 Deterministic 0.3158 0.2091 0.0150 39 Random 0.0611 0.2059 0.0287
15 Deterministic 0.2302 0.0792 0.0860 40 Deterministic 0.3810 0.2160 0.0421
16 Deterministic 0.3057 0.2396 0.0176 41 Deterministic 0.2462 0.0784 0.0815
17 Deterministic 0.3368 0.1016 0.0402 42 Deterministic 0.3902 0.0892 0.0960
18 Random 0.0357 0.3350 0.0712 43 Negligible 0.0003 0.0008 0.1094
19 Random 0.0685 0.2085 0.0071 44 Negligible 0.0039 0.0100 0.1755
20 Deterministic 0.2755 0.1612 0.0251 45 Deterministic 0.3879 0.1695 0.0458
21 Random 0.1170 0.2858 0.0239 46 Deterministic 0.3002 0.0716 0.0866
22 Random 0.0837 0.3412 0.0213 47 Negligible 0.0090 0.0198 0.1659
23 Deterministic 0.3955 0.0846 0.0927 48 Negligible 0.0221 0.0237 0.2081
24 Deterministic 0.3163 0.3154 0.0374 49 Negligible 0.0006 0.0003 0.1388
25 Negligible 0.0002 0.0006 0.1037 50 Deterministic 0.2032 0.0898 0.0844

Table 1: Characterization of servers behavior.

4. We compare the two values, so that we can charac-
terize the system as deterministic if DSys

t > R
Sys
t , as

random otherwise.

5. We compare the system dynamics at time t and t −
1. A change is detected whenever the two evaluations
differ significantly. For example, a change is signaled if
D

Sys
t−1 > R

Sys
t−1 and D

Sys
t < R

Sys
t . This means that the

energy that characterizes the system dynamics passed
from a deterministic behavior at time t−1 to a random
behavior at time t.

The system characterization is fundamental for manage-
ment purposes. For example, if at time t the contribution
of correlated dimensions prevails, the system can be consid-
ered more manageable, in the sense that its system behavior
can be predicted through forecasting models. On the other
hand, if the system has a predominant random characteriza-
tion, we have to adopt specific filtering techniques to reduce
its randomness. This information about the prevalent ran-
domness of the system is important for the management
system, that is aware that it is impossible to extrapolate
and forecast global behaviors.
On the testbed presented in Section 3, the results shown

in Figure 3 reveal that the most important sources of varia-
tion in CPU utilization are the correlated dimensions. Low-
correlated dimensions are next in importance. This con-
clusion is confirmed by the results in Table 2 showing the
percentage of total energy that can be assigned to each of
the three dimension classes, including also the not-relevant
class.
Correlated dimensions provide almost six times the contri-

bution of the low-correlated class, and almost nine times the

Correlated Low-correlated Not-relevant
D

Sys
t R

Sys
t

77.79% 13.36% 8.85%

Table 2: Contributions of energy provided by the
classes of dimensions (system’s view).

contribution of the not-relevant class. As D
Sys
t > R

Sys
t , we

can consider that the distributed system has a prevalently
deterministic behavior. This conclusion has important con-
sequences for management. For example, we can assume
that it is possible to represent the overall system behavior
through a global index as a linear combination of homoge-
neous indexes (e.g., the CPU), similarly to the mean load
index of all servers used in [38]. Such a global index of homo-
geneous and prevalently deterministic resources would be an
acceptably accurate approximation of the system character-
ization that could be used for several management decisions
in terms of trend analysis, forecasting and capacity planning
models.

If we evaluate the mean CPU utilization computed over
the 50 servers of our testbed as a global index, then we ob-
tain in Figure 4(a) that the system activity is dominated
by periodic trends where increases during diurnal activity
are followed by decreases during the night. These corre-
lated fluctuations reflect the prevalently deterministic na-
ture of the system. This visual interpretation is confirmed
by the corresponding autocorrelation values reported in Fig-
ure 4(b). The slow decay of the ACF curve means that the



global index exhibits high temporal dependence among its
samples and that a strong deterministic component influ-
ences the mean CPU utilization behavior.
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Figure 4: Example of global index in a prevalently
deterministic system.

Besides a static characterization, the most important con-
tribution is to identify major changes in system dynamics.
To this purpose, we continuously evaluate how the deter-
ministic and random system components evolve at different
check points. When only minor instabilities with no impact
on the overall system operations affect the system, the two
percentages DSys

t and R
Sys
t of energy should remain almost

unchanged. When the two percentages change significantly,
we can assume that the system experienced some relevant
change(s) that must be signaled to the management support.
In this way, we selectively signal to system management only
those changes having repercussions on the overall system,
instead of activating management procedures for any vari-
ations in the server behaviors that in a similar context are
continuously changing.
Figure 5 shows the evolution of the deterministic (white

bars) and random (black bars) percentages of energy during
22 business days. Both white and black bars show a sta-
ble nature with small differences from day to day. When at
t = 19 a new business application connected to a database
was installed, the two percentages experience a sudden in-
crease/decrease thus evidencing a significant change in sys-
tem dynamics.
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Figure 5: Evolution in time of deterministic and ran-
dom percentages of energy.

This information can be passed to the management sys-
tem because signals of relevant changes can guide operator
decisions today and autonomic decisions tomorrow. The

transition of the system dynamics from a deterministic to a
random characterization does not provide a motivation by
itself. Further investigations are necessary because several
events can cause a change of system dynamics. In our ap-
proach, a change may be due to several servers changing
their class of characterization (deterministic, random and
negligible), and/or to relevant modifications of the index
of variation (in this example, the standard deviation of the
CPU utilization) of multiple servers. Hence, if the model ev-
idences a change in system dynamics, such as that at t = 19,
we have to evaluate the number of servers belonging to each
class at time t = 18 and t = 19, and the standard deviation
of the CPU utilization of each server in these two days. A
system change from deterministic to random may be due to
one or a combination of the following events:

1. an increase of the number of servers belonging to the
random class;

2. an increase of the index of variation of random servers;

3. a decrease of the number of servers belonging to the
deterministic class;

4. a decrease of the index of variation of deterministic
servers.

Dual events are at the basis of a system change from
random to deterministic. The goal of the approach is to
evaluate which event(s) caused a so relevant change of sys-
tem dynamics. By taking as an example of application the
testbed used for Figure 5, we evaluate the number of servers
of the three classes and the CPU standard deviations of each
server at time t = 18 and t = 19. Figure 6 reports the num-
ber of servers for each class on the x-axis, and the standard
deviation of their CPU utilization on the y-axis.

By comparing the figures at time t = 18 and t = 19, we
notice that some servers passed to the random class and that
the indexes of variation of the servers of the random class in-
creased significantly, while the analogous indexes remained
almost stable for the deterministic and negligible classes.
These results suggest that the main reason of the change in
system dynamics at time t = 19 is due to a combination of
factors: more servers are characterized by a random behav-
ior and, even more important, there is a significant augment
in the indexes of variation of the servers of the random class.
This twofold event causes that the class of random servers
achieves a major impact on the total energy of the system at
the expenses of the deterministic class. This is an important
conclusion for a management system that has to take some
decisions as a consequence of a relevant change in system
dynamics.

6. COMPUTATIONAL COMPLEXITY

In this section, we compare the computational complexity
of the proposed approach against existing methods working
on the entire set of monitored data. The computational com-
plexities are summarized in Table 3, where n is the number
of samples of each data set, p is the number of considered
resources, and r is the number of relevant dimensions.

The PCA requires about O(p3+n∗p2) computations [15]
for the eigenvalue decomposition of a covariance matrix,
while the analysis of the statistical attributes of a set may
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Figure 6: Evaluation of the number of servers and their standard deviation before and after the change.

Proposed strategy Analysis of each data set

Major processing steps Computational Major processing steps Computational
complexity complexity

PCA analysis of a nxp matrix O(p3 + n ∗ p2) Filtering of p sets of length n O(p ∗ nlog(n))

Behavioral analysis of r sets O(r ∗ n2) Behavioral analysis of p sets O(p ∗ n2)

Total O(p3 + n ∗ p2 + r ∗ n2) Total O(p ∗ n2)

Table 3: Computational complexity.

provide a number of operations spanning from logarithmic
to exponential in the number of samples. In this evaluation,
we consider the application of behavioral analyses having at
most a quadratic computational cost. Hence, the total com-
putational complexity of the proposed methodology is O(p3

+ n ∗ p2 + r ∗ n2).
On the other hand, the analysis of each data set needs a

pre-filtering step on all monitored data. There are a lot of fil-
tering models with different properties and complexities. In
order to provide a reliable characterization, we consider the
Fast Fourier Transform [29] requiring O(p ∗ nlog(n)) com-
putations. Then, quadratic (or less) behavioral analyses are
applied to all filtered data. Hence, the total computational
complexity of the methods working on the entire data sets
is about O(p ∗ nlog(n) + p ∗ n2) ≈ O(p ∗ n2).
In Figure 7 we show the tendencies of the computational

complexity for the proposed and existing approaches as a
function of the number of considered resources p that are
sampled every five minutes for five working days, that is,
n = 1440. We can appreciate that by varying the dimension
of p up to one thousand, the computational complexity of
the proposed approach (line with filled circles in the figure)
remains always lower than that of existing methods (line
with squares) working on the entire data set. When the
number of considered resources p increases and n remains
constant, the analysis of each data set may become more
efficient. However, it is important to consider that, in large
data centers with tens of thousands of (virtual) machines,
no management system analyzes at the same time all data
sets. The typical strategy works hierarchically on subsets of
components, where subsets are defined in terms of physical
proximity or logical interactions. As long as we work on data



sets referring to thousands of entries, the proposed strategy
is much more efficient than the analysis operating on all data
sets.
We should also consider that the performance of the pro-

posed approach can be improved through the application of
less expensive implementations of the Principal Component
Analysis. For example, FastPCA [33] can diminish the di-
mensionality reduction complexity to O(p2). Hence, its use
in our strategy brings to a computational complexity that
follows the curve denoted by star points in Figure 7.
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7. RELATED WORK
Existing models and frameworks supporting management

systems through server characterization are based on two
assumptions: the number of data sets and the size of each of
them allow the analysis of the entire set of data (e.g., [36, 25,
34, 13]); resource measures are characterized by statistically
homogeneous behaviors and/or stable conditions (e.g., [2,
10, 35, 30, 13]). These assumptions are unrealistic in modern
data centers accommodating varying demands for different
services.
The number of resources that are monitored and the pe-

riod of monitoring is growing [32, 38], hence the compu-
tational cost associated to the analysis of each data set is
impracticable. In literature there are many reduction mod-
els oriented to limit the data that must be analyzed, such
as the Principal Component Analysis (PCA) [1], the Corre-
spondence Analysis [16], the Factor Analysis [26], the Non-
Negative Matrix-Factorization [24], the Independent Com-
ponent Analysis [19]. We propose an approach based on
the PCA because it makes only weak assumptions on data
characteristics and allows us to select the most important
information on the basis of the so called energy. Thanks to
these properties, PCA has been extensively used in many
computer related contexts, especially for workload charac-
terization [2] and for network traffic analysis [4]. In the
context of system management, the work in [37] integrates
PCA into a two-stage log processing method that is oriented
to discover the statistically dominant patterns in the data
set and thereby to identify possible anomalies. Another pa-
per [28] uses PCA to identify interactions among the com-
ponents of large production systems. Even if the goals of

these works are different, they support the possibility of us-
ing PCA in managing large data sets and finding relevant
information.

Other papers assume that the considered data sets are
statistically homogeneous [2, 10, 35, 30, 13]. This assump-
tion is invalid in the considered context because the data sets
coming from different servers and system resources are quite
heterogeneous in statistical terms and extremely variable.
For this reason, our paper deals with the statistical hetero-
geneity of resource measures that must be considered as an
intrinsic feature of modern data centers [38, 2] leveraging
virtualization technologies and providing multiple Internet-
based services subject to varying demands. We do not filter
heterogeneity, but we classify resources on the basis of their
deterministic, random or negligible behavior so to determine
whether and which model can be better adopted by a man-
agement system.

8. CONCLUSIONS
Modern data centers require management decisions that

should continuously analyze huge amount of heterogeneous
data sets coming from system and network monitors. Un-
derstanding the statistical characterization of data sets of
each server and the evolution of the system dynamics is cru-
cial for system management. However, the increasing size
of monitored data and their high variability limit the appli-
cability of existing approaches working on all data sets.

We propose a novel strategy for supporting the decisions
of the system management that, by taking system monitor
data, is able to select the most relevant data sets, statis-
tically characterize their behavior, and to evaluate the dy-
namics of the overall system. All experiments carried on real
data sets demonstrate that the proposed strategy finds use-
ful applications in system management related to modern
Internet data centers. The next step is oriented to the char-
acterization of server behavior and system dynamics through
the combination of different metrics and resources.
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