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Abstract

Efficient system management requires a continuous knowledge about the state

of system and application resources that are typically represented through time

series obtained by monitors. Capacity planning studies, forecasting, state ag-

gregation, anomaly and event detection would be facilitated by evidence of data

correlations.

Unfortunately, the high variability characterizing most time series related

to system resources affects the accuracy and robustness of existing correlation

solutions. This paper proposes an innovative approach that is especially tai-

lored to detect linear and non-linear correlation between time series that are

intrinsically characterized by high variability.

We compare the proposed solution and existing algorithms in terms of accu-

racy and robustness for several synthetic and real settings characterized by low

and high variability, linear and non-linear correlation. The results show that

our proposal guarantees analogous performance for low variable time series, and

improves state of the art in finding correlations in highly variable domains that

are of interest for the application context.
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1. Introduction

Correlation models are applied to various scientific fields as bases for several

statistical analyses, such as forecasting [1], state aggregation [2], anomaly [3, 4]

and event detection [5]. For computer systems management, capturing the

correlation between time series monitored in a system allows us to discover

groups of resources with similar behavior, to reflect changing relationships and,

as a global effect, to manage the system in a more efficient way.

There are several correlation models showing robust and accurate results

when applied to low variable domains. However, they fail in finding correlation

between time series collected from system monitors, where relationships between

data are often hidden by high variability. In these contexts, the most popular

models, such as the Pearson coefficient [6], the Spearman rank [8], the Kendall

rank [9], and the Local Correlation index [5], are unable to capture correlations

even when they exist. The approach of filtering highly variable time series and

then applying correlation models does not solve the problem and opens other

issues.

We propose a new correlation model that is able to capture both linear and

non-linear dependences even among time series characterized by high variability.

The accuracy and robustness of the proposed solution is achieved through an

original approach that separates trend patterns from perturbation patterns, and

evaluates correlation by computing the similarity of trend patterns because they

reveal the way in which a time series may depend on another one. From this

perspective, the idea we pursue is based on the following steps:

1. we extract from time series the information about their trend patterns by

removing the perturbations that mask the presence of possible relation-

ships between data;

2. we measure how close the extracted trend patterns of two time series

are, thus capturing the presence of linear dependency and of non-linear

dependency.
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The proposed method represents a step ahead of the literature because

the Pearson correlation moment does not cover non-linear dependency [5], the

Spearman and Kendall ranks are conditioned by the data distributions [6]. The

LoCo model would be able to capture some non-linear relationships, but it infers

that the main patterns of a time series are only trend patterns without consid-

ering the impact of perturbations. However, system and software resources are

characterized by several perturbations due to I/O operations, synchronizations,

context switching. We extend the correlation analysis and its applications to

domains that are characterized by perturbations and highly variable time se-

ries [10, 11]. Time series related to system resources may have linear and non-

linear relationships. For example, in Internet services, network traffic volume

and service times change in accordance with the volume of user requests [12].

These relationships are typically masked by perturbations intrinsically related

to the nature of the applications, but when correlations exist our model is able

to identify them.

We illustrate the proposed method applied to real and synthetic time series.

We discuss its quantitative and qualitative interpretation, compare it against

existing solutions and demonstrate its accuracy and robustness. Moreover, we

evaluate that the proposed correlation model is robust and accurate even as a

support to different applications, such as tracking analysis, anomaly detection,

and prediction analysis.

The remainder of this paper is organized as follows. Section 2 defines the

problem of correlation when time series deriving from monitored system re-

sources are characterized by high variability. Section 3 presents the proposed

correlation model. Section 4 evaluates the accuracy and robustness of the model

for several time series characterized by various statistical properties, and com-

pares its results against those achieved by existing correlation models. Section 5

assesses the complexity of the proposal and of state-of-the-art alternatives. Sec-

tion 6 analyzes the results of the proposed model when applied to tracking

analysis, to anomaly detection, and to forecasting problems. Section 7 com-

pares our contribution with respect to the state of the art. Section 8 concludes
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the paper with some final remarks.

2. Problem definition

We consider data obtained from system and software monitors through the

periodic sampling of resource measures. As evidenced in many works [10, 13,

11], these measures are extremely variable even at different time scales. We

transform these samples in time series. We denote the two considered time

series as x ≡ [x1, . . . , xn] and y ≡ [y1, . . . , yn], where each one is a vector

collecting a time-ordered discrete sequence of data points that can be sampled

once.

Existing correlation models do not work on time series exhibiting a high

degree of variability, hence we are interested to propose a new correlation index,

typically denoted as ρ, measuring the similarity between x and y, as in [14]. The

absolute value of the correlation index ranges between 0 and 1. When ρ = 0,

there is no relationship between the two time series, while ρ = 1 indicates a

complete correlation between x and y. The literature offers several guidelines

for the best interpretation of the value of the correlation index [14, 6, 7], but

all criteria depend on the context and purposes of the analysis. Providing rules

for interpreting the meaning of correlation indexes is out of the scope of this

paper. In our context, we decide to adopt the common interpretation indicating

a strong correlation when ρ > 0.5, and a weak correlation for ρ ≤ 0.5 (e.g., [14]).

Different choices for the threshold may lead to different results but do not impact

the main conclusions of this paper.

Many models for capturing correlation are robust and accurate (e.g., [6,

5, 8, 9]) except when they are applied to time series characterized by high

variability that is typical of system resource metrics. In accordance with [15],

high variability is a phenomenon by which a set of observations takes values that

vary over orders of magnitude, with most observations taking values around the

time series trend (i.e., trend pattern), and some observations departing from

it with appreciable frequency, even taking extremely large values with non-
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negligible probability (i.e., perturbation pattern). Trend patterns represent the

tendency of a time series that may be related to the other time series, while

perturbation patterns consist of random observations hiding trends. A high

standard deviation is the most typical trademark of a highly variable time series.

This characteristic implies a trend pattern that is hard to identify because it is

masked by perturbations. In this paper, we use standard deviation as a measure

of data variability.

The ability of a correlation model in detecting dependency among correlated

time series is measured in terms of accuracy, while the ability in guaranteeing

a stable correlation index when conditions do not change is measured in terms

of robustness. Accuracy measures how close the correlation index is to the

effective level of correlation between two time series, while robustness evaluates

the variability of the correlation index among different evaluations carried on

under unchanged conditions.

In the case of highly variable time series, the most popular correlation models

are affected by two main problems:

1. low accuracy, since they are unable to detect linear and non-linear depen-

dences even among correlated time series;

2. low robustness, since they do not guarantee a stable evaluation of the

correlation index, even when the relationships between the time series do

not change.

Let us give an example of the above problems. We refer to datasets com-

ing from the resource monitoring of a multi-tier system, whose architecture is

illustrated in Figure 1. The four application servers are deployed through the

Tomcat servlet container and are connected to two MySQL database servers.

The Web switch node, running a modified version of the Apache Web server as

in [10], assigns the same amount of requests to the two Apache-based HTTP

servers, that run identical applications on identical hardware.

In Figure 2(a), we report 1050 data of the CPU utilization of the two Web

servers sampled every 5 minutes. The data are highly variable, although there
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Figure 1: Architecture of a multi-tier Web cluster.

is visual evidence of a high correlation between the two time series. At system

level, this correlation is confirmed by the fact that the two hosts receive an

analogous amount of requests assigned by the front-end load balancer dispatcher.

We evaluate the correlation index between the two time series through the

Pearson model [6]. (The Pearson model is used as an example, but other existing

models do not change the results). The results of the correlation index are

reported in Figure 2(b). Despite the clear relationship between the datasets

referring to the two hosts, Figure 2(b) shows that the Pearson model is affected

by the two anticipated problems: its results are characterized by low accuracy

because the Pearson correlation index remains lower than 0.25 during the entire

interval of observation; its results are characterized by low robustness because

the correlation index presents marked oscillations even when the correlation

between the times series does not change.

A typical approach addressing issues related to highly variable time series

is to refer to some rectification algorithms (e.g., [16]). Unfortunately, we will

see that filtering data and then applying an existing correlation model does not

work and, even worse, opens other issues by moving the problem to the dimen-

sion of finding the “right” filter and its parameters. This paper cannot discuss

all details of the extensively investigated and hard-to-solve problems related to

filters. Interested readers can refer to the huge literature on this field (e.g.,
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(b) Pearson correlation index

Figure 2: Result of correlation models applied to highly variable data.

[16, 10, 17]). Basically, we have two alternatives that are equally useless: to

apply a weak or a strong filter. A weak filter removes small variability, hence

underlying relationships among time series remain undetectable by existing cor-

relation models; a strong filter may remove important information about trend

patterns and thus prevent the possibility of finding correlations.

As example, let us consider again the time series represented in Figure 2(a).

We choose a popular filter such as the Exponential Weighted Moving Average

(EWMA) [16] as a basis, and apply different parameters in order to obtain a

weak and a strong filter. The filtered time series are shown in Figure 3(a) and

Figure 4(a), respectively. In Figure 3(b), we report the results of the Pearson

model applied to the weakly filtered data. As expected, the results are improved

with respect to the not filtered case, but the conclusion remains unchanged: the

two time series are considered uncorrelated because the correlation index re-

mains lower than 0.5 for almost the entire interval of observation. By increasing

the filter strength, most perturbations are discarded, as shown in Figure 4(b).

The problem is that a strong filter cancels also information about trend patterns

characterizing the time series. The final result is that the correlation index be-

comes even less robust as it continuously passes from evaluating the time series

as correlated, then uncorrelated, correlated again, and so on.

All these results evidence that high variability represents a limit of existing

correlation models even when they are integrated with filtering techniques. De-
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(a) Weak filtered CPU utilization
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(b) Pearson correlation index

Figure 3: Weak filtering applied before correlation analysis.
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(a) Strong filtered CPU utilization
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(b) Pearson correlation index

Figure 4: Strong filtering applied before correlation analysis.

tecting correlations among highly variable data as those obtained by resource

monitoring requires some novel approach. The model proposed in the following

section has several benefits: it does not require any assumption about statistical

properties, any pre-analysis of time series characteristics, and any integration

with pre-filtering techniques; it is able to adapt its parameters to data charac-

teristics and to capture linear and non-linear dependences.

3. Correlation model for highly variable time series

In this section, we present a novel correlation model, namely CoHiVa

(Correlation for Highly Variable data), that is able to evaluate similarity be-

tween time series that are characterized by high variability. This model may be

viewed as an improvement of the LoCo algorithm [5] that proposes the evalua-

tion of correlation through the analysis of pattern similarity. CoHiVa extends
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this idea to the correlation analysis in highly variable domains. Unlike the

Pearson model [6] that works well only if time series are linked by a linear re-

lationship, CoHiVa does not assume any data dependency and it is appropriate

to discover both linear and non-linear dependencies. Moreover, CoHiVa does

not assume any data distribution, as required by the Spearman and Kendall

models [8, 9].

The CoHiVa algorithm is based on the following four main steps:

1. we extract from x and y the trend patterns and the perturbation patterns;

2. we remove errors contaminating the time series;

3. we select the trend patterns by discarding the perturbation patterns con-

taining highly variable information;

4. we compute the CoHiVa correlation index between the two time series by

evaluating the similarity between their trend patterns.

Each step is detailed in the following subsections.

3.1. Pattern extraction

The first goal is to identify the main patterns that are present in the time

series x ≡ [x1, . . . , xn], where patterns correspond to trends (i.e., periodic and

seasonal components) and perturbations. To this end, we apply the Singular

Value Decomposition (SVD) [5] to the auto-covariance matrix of the time series.

Among the spectral decomposition algorithms, SVD is considered as the baseline

technique for separating existing patterns without any assumption about the

statistical characteristics of the data [18, 19]. In practice, we estimate the full

auto-covariance matrix of the time series x that is defined as:

Φ(x) = x⊗ x, (1)

where Φ(x) is the auto-covariance matrix of x.

Then, we compute the SVD of the auto-covariance matrix Φ(x) as follows:

Φ(x) = U(x)Σ(x)V(x)T , (2)
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where U(x), Σ(x) and V(x) ∈ R
n×n.

The columns vi of V(x) ≡ [v1, . . . ,vn] are the right singular vectors of Φ(x).

Similarly, the columns ui of U(x) ≡ [u1, . . . ,un] are the left singular vectors of

Φ(x). Finally, Σ(x) ≡ diag[s1, . . . , sn] is a diagonal matrix with positive values

si, called the singular values of Φ(x).

3.2. Removing errors

The singular vectors corresponding to singular values often contain some

approximation errors [21] that usually contaminate the measured variables. The

contribution of these errors must be discarded by eliminating the singular vectors

corresponding to the smallest singular values [22]. By retaining just the principal

vectors corresponding to the highest k singular values (k < n) we can reconstruct

a k-dimensional approximation of the correlation matrix:

Φ̄(x) ≡ Ū(x)Σ̄(x)V̄(x)T , (3)

where Ū(x) ≡ [ū1, . . . , ūk], V̄(x) ≡ [v̄1, . . . , v̄k] and Σ̄(x) ≡ diag [s̄1, . . . , s̄k].

Literature on SVD gives little importance to the problem of dynamically

selecting the appropriate number of principal vectors that capture the patterns

(e.g., [5, 18]). A common approach is to choose a fixed number of principal vec-

tors independently of data characteristics, but this choice is unsuitable to time-

varying contexts where the statistical properties of data continuously change

in time. Hence, we choose a threshold-based method that takes into account

the characteristics of considered data [23]. We select the principal vectors con-

tributing to 90% of variation, and discard singular vectors contributing for less

than 10%. This number of principal vectors capturing the main patterns of the

time series is variable and dependent to the amount of variation in data. The

variable number of principal vectors capturing the main patterns of the time

series is denoted by k.

3.3. Selection of trend patterns

We now analyze the main patterns of x in order to understand the informa-

tion they carry. The goal is to retain just trend patterns but, in the context of
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interest for this paper, we can expect that the main patterns may include also

some perturbation patterns [24]. As these last patterns prevent the identifica-

tion of correlation between time series, we have to discard them. The idea is to

build a new matrix that is based on a subspace of the k̂ ≤ k principal vectors

that capture trend patterns.

To remove perturbation patterns from Ū(x), we compute the Hurst exponent

H of the k principal vectors by means of the R/S analysis of Hurst [25]. The

Hurst exponent measures whether the data have pure random variability or are

characterized even by some underlying trends [26]. For each principal vector

ūi ∈ Ū(x) of length n, we first define its cumulative deviate series:

Zt =

t
∑

j=1

(ūj −m), (4)

where t = 1, 2, . . . , n, ūj is the j−th element of the i−th principal vector and

m is the mean of ūi.

To define the rescaled range R(n)
S(n) of Hurst, we compute the range as:

R(n) = max (Z1, Z2, . . . , Zn)−min (Z1, Z2, . . . , Zn) , (5)

and the standard deviation as:

S(n) =

√

√

√

√

1

n

n
∑

j=1

(ūj −m)
2
. (6)

The Hurst exponent H is defined in terms of the asymptotic behavior of the

rescaled range as a function of the time span of a time series as follows [25]:

E

[

R(n)

S(n)

]

= CnH as n → ∞, (7)

where E[R(n)
S(n) ] is the expected value of the rescaled range, n is the number of

observations in a time series, and C is a constant.

If the estimated Hurst exponent Hi of a principal vector ūi ∈ Ū(x) is close

to 0.5, then we can conclude that ūi contains perturbations. On the other hand,

if the Hurst exponent remains far from 0.5, then we can assume that ūi is a

trend principal vector.
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Our model builds up a new Û(x) matrix containing only the k̂ trend principal

vectors ûj , j = 1, . . . , k̂ as follows:

∀ūi ∈ Ū(x), i = 1, . . . , k:

ûj ≡ ūi if Hi < 0.5−
δ

2
or Hi > 0.5 +

δ

2
, (8)

where δ is a two-sided 95% confidence interval empirically computed depending

on the number of samples as in [26].

This separation approach allows us to remove perturbation patterns in the

time series and to focus only on trend patterns. By focusing on the k̂ ≪ n

trend patterns, we are able to construct a new approximation of the Φ(x)

matrix that we name trend approximation. Given Û(x) ≡ [û1, . . . , ûk̂
], the

corresponding singular values and the right singular vectors form the matrices

Σ̂(x) ≡ diag [ŝ1, . . . , ŝk̂] and V̂(x) ≡ [v̂1, . . . , v̂k̂
], respectively. Through these

matrices, the trend approximation of the correlation matrix using only trend

patterns is given by:

Φ̂(x) ≡ Û(x)Σ̂(x)V̂(x)T . (9)

The matrix Φ̂(x) approximates the trend behavior of Φ(x) by removing

both error information and perturbation patterns that affect the identification

of correlations. This approach retains trend information, as well as seasonal and

oscillatory behavior in the time series.

3.4. Computation of the CoHiVa index

After the extraction of the main trends, we can evaluate whether they are

correlated or not by computing how close their trend patterns are. As example,

we compute the correlation index of the time series x and y by measuring their

trend similarity. When the matrices Û(x) and Û(y) are similar, the time series

x and y follow similar (linear or non-linear) trends, and we can consider that

the original time series are correlated. In geometric terms, if two time series are

correlated, then the trend principal vectors of each time series should lie within

the subspace spanned by the trend principal vectors of the other time series.
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For this reason, we project the trend principal vectors of the time series x into

the trend principal vectors of y, as following:

ρ(x,y) =
1

k̂(x) + k̂(y)
(‖Û(x)T Û(y)‖+ ‖Û(y)T Û(x)‖), (10)

where k̂(x) and k̂(y) are the numbers of trend principal vectors of Φ(x) and

Φ(y), respectively, while Û(x) and Û(y) are the trend principal vectors matrices

collecting them.

4. Performance evaluation

We evaluate the performance of the proposed correlation model, and we

compare it against the results of several state-of-the-art alternatives. As terms of

comparison, we consider the following correlation models: the Pearson product

moment (Pearson) [6], the Spearman rank (Spearman) [8], the Kendall rank

(Kendall) [9], and the Local Correlation index (LoCo) [5]. Moreover, we consider

the performance of a model that is integrated with a pre-filtering technique,

namely Pearson with filtering.

To evaluate the accuracy and robustness of all models, we initially refer to

synthetic time series that allow us to have full control over their actual degree

of correlation. Then, in the following section we will consider real time series.

In Section ??, we first evaluate the impact of linear and non-linear corre-

lations on the models performance. Then, in Section 4.2 we evaluate how the

performance of the correlation models changes in case of time series affected by

different levels of variability.

4.1. Linear and non-linear correlations

Here, we consider three types of time series: correlated with linear depen-

dence, correlated with non-linear dependence, not correlated. The time se-

ries of each scenario take values in the range [0, 1]. In order to evaluate the

ability of the correlation models to capture different types of dependency for

different levels of variability, we introduce perturbations from N(0, σ), where
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σ ∈ {0.01, 0.05, 0.1, . . . , 0.5} is the standard deviation that quantifies the inten-

sity of perturbations added to data [27, 28].

The performance of the correlation models is evaluated in terms of accuracy

(Section 4.1.1) and robustness (Section 4.1.2) over 1000 independent generations

of data for each σ value in each scenario.

4.1.1. Accuracy

We define the accuracy of a correlation model as its ability to capture cor-

relation when data present some linear or non-linear relationships, and in cat-

egorizing as not correlated time series having no dependence. For example, an

accurate model should obtain a correlation index close to 1 in both linear and

non-linear scenarios, and an index close to 0 in the uncorrelated scenario.

The first set of experiments evaluates the accuracy of the correlation models

when time series are characterized by different intensities of perturbations. In

Figure 5, we report the mean correlation index of all considered models com-

puted over 1000 generations of correlated data with different σ values. We

remind the reader that we consider a strong correlation when ρ > 0.5, and a

weak correlation for ρ ≤ 0.5 [14]. The results of Figure 5(a) refer to the linear

scenario. As expected, we see a decrease of all correlation indexes for increas-

ing values of σ, but the impact of perturbations is different for the considered

models. When the dispersion is low (σ ≤ 0.2), all models are able to capture

the strong correlation among data. When the dispersion increases (σ > 0.2),

the Kendall model is the first to lose its ability to detect data correlation. In

higher variable contexts (σ > 0.3), only the CoHiVa model captures the strong

data correlation for each variability level, because its index is always higher than

0.65.

The accuracy of all the models deteriorates when we pass to a scenario where

the correlation between data is non-linear. A comparison between Figure 5(a)

and Figure 5(b) gives a first idea about the overall results. Only the CoHiVa

model is able to detect a strong correlation for any σ when the relationship

between data is non-linear. On the other hand, all existing models are affected

14



0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation

C
or

re
la

tio
n

 

 

Pearson

Spearman

Kendall

LoCo

CoHiVa

(a) Linear scenario

0.01 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Standard Deviation

C
or

re
la

tio
n

 

 

Pearson
Spearman
Kendall
LoCo
CoHiVa

(b) Non-linear scenario

Figure 5: Analysis of accuracy of correlation models without data filtering.

by a low accuracy for increasing values of σ. (They estimate a weak correlation

even when data are perturbed by very low levels of dispersion, such as σ = 0.15.)

It is interesting to observe that the Spearman rank, which is expressly oriented

to capture non-linear dependencies [8], exhibits the best accuracy when the

dispersion is very low (that is, σ < 0.05), but it loses its capacity as soon as the

time series are characterized by higher perturbations.

To address issues related to high variability, the state-of-the-art models may

increase their accuracy by working on a filtered representation of the original

time series. We anticipated in Section 2 that this approach does not work,

but for the sake of an exhaustive comparison we compare the performance of

CoHiVa against a Pearson model combined with a pre-filtering technique. We
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have to specify that the choice of the best filtering model and of its parameters

is a serious issue by itself, and is out of the scope of this paper. We integrate the

Pearson correlation model with an EWMA filter that we have experimentally

evaluated as giving good results. We do not claim that we are applying an

optimal filter with optimal parameter setting, even because the definition of

optimum is improper in this context.

Figure 6 shows the results obtained by applying the Pearson model to data

filtered through a weak and a strong filter. If we compare the results of Pearson

without filter to the results of Pearson with any kind of filtering, we can appre-

ciate that the filter in fact improves accuracy: the correlation value is higher

for every σ and for linear and non-linear scenarios. In the linear scenario shown

in Figure 6(a), the Pearson model with filtering is able to detect a correlation

index higher than 0.5 for any σ. On the other hand, if we consider the non-linear

scenario shown in Figure 6(b), there is an evident decrease of the correlation in-

dex. Both weak and strong filtering are useless because they estimate a ρ ≤ 0.5

when σ > 0.2 and σ > 0.3, respectively.

These results demonstrate that filters do not guarantee accurate results,

without considering the further problems related to the choice of the filter and

its parameters in a highly variable context.

To complete the accuracy evaluation of the models, we report some results

obtained in the third scenario characterized by time series with no dependence.

Despite the level of variability, we see in Figure 7 that all the models are accurate

and detect a weak correlation between time series having no dependence. This

result shows that CoHiVa joins the high performance of capturing linear and

non-linear correlations to the ability of detecting the absence of correlation.

4.1.2. Robustness

The accuracy of a correlation model must be combined with information

about its robustness, that assesses the reliability of correlation model results

across different evaluations. We quantify the robustness in terms of the coeffi-

cient of variation (CoV) of the correlation indexes computed over the different
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(b) Non-linear scenario

Figure 6: Analysis of accuracy of correlation models with data filtering.
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Figure 7: Analysis of accuracy in a not correlated scenario.

data generations. The coefficient of variation is defined as the ratio of the stan-

dard deviation to the mean of the correlation index over all the experiments. A
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lower CoV denotes a better robustness of the correlation model.

We evaluate the robustness of the results obtained in Section ??. Table 1

reports the CoV of each considered correlation model computed over 1000 gen-

erations of time series in a linear scenario. The columns refer to the increasing

values of perturbations intensity σ, while the rows report the correlation mod-

els. The CoV of all correlation models increases when σ increases. Compared

to existing models, the CoHiVa model is able to keep the lowest CoV for any σ

value. Thanks to a CoV always lower than 0.15, the proposed correlation model

guarantees a high robustness in capturing linear correlations also among highly

variable data.

σ

0.01 0.1 0.2 0.3 0.4 0.5

Pearson 0.0232 0.0299 0.0914 0.1992 0.3437 0.4817

Spearman 0.0227 0.0304 0.0905 0.2036 0.3496 0.4874

Kendall 0.0371 0.0486 0.1098 0.2170 0.3606 0.4936

LoCo 0.0220 0.0284 0.0835 0.1653 0.2452 0.2735

Pearson with weak filtering 0.0001 0.0069 0.0324 0.0785 0.1206 0.1787

Pearson with strong filtering 0.0001 0.0123 0.0497 0.0917 0.1318 0.1736

CoHiVa 0.0073 0.0086 0.0217 0.0498 0.0888 0.1343

Table 1: Coefficient of Variation in the linear scenario.

σ

0.01 0.1 0.2 0.3 0.4 0.5

Pearson 0.0274 0.1296 0.3704 0.5843 0.6838 0.7052

Spearman 0.0266 0.1457 0.3894 0.5919 0.6892 0.7104

Kendall 0.0391 0.1632 0.4014 0.5997 0.6960 0.7194

LoCo 0.0258 0.1136 0.2550 0.2923 0.3073 0.2924

Pearson with weak filtering 0.0070 0.0835 0.2026 0.2215 0.2224 0.2236

Pearson with strong filtering 0.0083 0.0944 0.2120 0.2468 0.2434 0.2473

CoHiVa 0.0380 0.0172 0.1467 0.1614 0.1711 0.1926

Table 2: Coefficient of Variation in the non-linear scenario.

As expected, the non-linear context worsens the robustness of all the models.

This main conclusion is confirmed by the CoV values reported in Table 2. These

results demonstrate that only the CoHiVa model is able to guarantee a CoV
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lower than 0.2 for any perturbation intensity. On the other hand, state-of-the-

art models show poor results even for medium-low values of σ (σ ≤ 0.2). With

the exception of the LoCo and the Pearson model integrated with filters, all

the other correlation models are totally unreliable in highly variable contexts

because they reach CoV values around 0.7. These results confirm that they

cannot be used to capture non-linear relationships among highly variable time

series.

Our analyses confirm that the most popular correlation models without

filtering are affected by low accuracy and robustness when data exhibit high

variabilities and/or non-linear dependency. Filtering the time series and then

applying a correlation model is not sufficient to solve the problems. The use

of the proposed CoHiVa model allows to guarantee good performance for any

considered type of correlation and variability in the time series.

4.2. Different variability levels

So far, we considered a variability level σ and simulated two time series both

affected by that same level of variability. Now, we consider the case in which

the variability level that affects the two time series is different. The goal is to

evaluate how the difference in time series variability levels impacts on the models

performance. Again, we evaluate the models performance in terms of both

accuracy and robustness over 1000 generations of linear correlated data taking

values in the range [0, 1]. We use this set to test the models over all possible

combinations of time series with variability levels in {0.01, 0.05, 0.1, . . . , 0.5}.

Figure 8 shows the accuracy results of the CoHiVa and LoCo correlation

models over all the combinations of variabilities in the time series. (We selected

LoCo as term of comparison, since it has shown to be our best competitor).

As expected, both indexes have better performance when working on sets

where one or both time series have low variability. As the variability of one time

series increases, the model performance decreases. Besides that, the increasing

of variability has very different impact over the performance of the two models.

In Figure 8(a), we see that the performance of CoHiVa slightly depend on the
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Figure 8: Analysis of accuracy at different variability levels.
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different variability levels for the two time series. Despite the fact that a time

series has low (σ = 0.01) or high (σ = 0.5) variability, the correlation level

captured by CoHiVa always maintains high, with an index that never goes below

0.64. On the contrary, to combine different variability levels has evident impact

on LoCo performance in Figure 8(b). In particular, the increase in variability

of one of the two time series strongly decreases the LoCo correlation index. For

example, if one time series has σ = 0.1, LoCo gives very different results in case

that the other time series is low variable (σ = 0.01) or highly variable (σ = 0.5).

In the first case, the LoCo index sees a high correlation between the two time

series with ρ = 0.94; in the latter case, ρ drops to 0.47 and the two time series

are seen as not correlated. This drastic difference (≈ 0.5) in LoCo accuracy

results due to the change of variability in only one time series are due to the

inability of LoCo to adapt the choice of number of principal components to the

characteristics of the time series. Through CoHiVa and its adaptive selection

of trend patterns, accuracy is maintained high despite the level of variability of

the time series.

To complete the evaluation, Figure 9 shows the robustness results of the

CoHiVa and LoCo correlation models over all the combinations of variabilities

in the time series. Again, changes in the variability levels of the two time series

have small effects on the robustness of CoHiVa, as we can see in Figure 9(a).

CoV values rise above 0.1 only in case that both time series are affected by high

variability levels (i.e., σ ≥ 0.4) and they never exceed 0.12. By comparing Fig-

ure 9(b) to Figure 9(a), we see an evident increase in both values and instability

of LoCo CoVs with respect to CoHiVa ones. This means that LoCo robustness,

as well as its accuracy, is strongly dependent to the variability of the two time

series. For example, if one time series has σ = 0.01, the LoCo robustness can

span from a CoV value of 0 to a CoV value of 0.3 on the basis of the variability

level of the other time series.

From this analyses we see that both different types of correlation (i.e., linear

and non-linear) and different levels of variabilities strongly affect the accuracy

and robustness of existing correlation models. The main result is that the pro-
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Figure 9: Analysis of robustness at different variability levels.
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posed CoHiVa model is able to guarantee good performance for any considered

scenario.

5. Complexity

This section estimates the computational complexity and memory space re-

quirements of the considered models: Pearson, Spearman and Kendall, LoCo,

CoHiVa, and the possibility of using a filter model.

The majority of these models are characterized by a linear computational

complexity as a function of the components n of the time series window. The

Spearman and Kendall ranks, and the Pearson index computing correlation

between two time series of n data points requires O(n) operations. Both them

require O(n) space for storing the time series data.

The LoCo index requires O(n2k) operations to compute the k largest eigen-

vectors of the auto-covariance matrix of a time series of length n. LoCo au-

thors [5] set the parameter k to a small value (k = 4) in all their experiments,

hence the complexity remains quadratic. For the same reason, the memory

requirements can be considered linear, because LoCo needs O(nk) space for

storing k eigenvectors and O(n) space for storing the time series values, for a

total of O(nk + n) = O(nk) space.

The CoHiVa model has an approach different from LoCo, because CoHiVa

does not set the number of patterns, but it selects k and k̂ according to the

characteristics of the time series. For this reason, we can distinguish two phases

in CoHiVa: startup and operation. The startup phase, during which we evaluate

k and k̂, requires the SVD decomposition of the auto-covariance matrix that has

a complexity in the order of O(n3). After this startup phase, we incrementally

update the CoHiVa index in a streaming setting. By employing the subspace

tracking algorithms as in [29], the update of the trend approximation matrix

requires O(nk̂) operations. The space requirement is in the order of O(nk̂). In

all our experiments on real datasets, we observed that typically k̂ ≪ n. Hence,

the cost of the operation phase of CoHiVa tends to be linear as a function of
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the length of the time series in terms of time and space. These values are

comparable to the complexity of existing correlation solutions.

As example, Table 3 reports the average runtime for the different techniques

to compute correlation between linear correlated time series over one of the

experiments. The experimental setting used as example is σ = 0.3 and n = 100.

Pearson Spearman Kendall LoCo CoHiVa

startup operation

Time (s) 0.01 0.02 0.04 0.37 0.51 0.06

Table 3: Average runtime over an example experiment.

For highly variable time series, we can also consider the possibility of the

combined use of filtering data and applying a correlation algorithm. In this

case, the overall computational complexity depends on the filtering technique.

Some filtering techniques, such as EWMA, are characterized by a linear com-

plexity. Other more efficient filters, such as Fast Fourier Transform [30], require

O(nlog(n)) computations. As a consequence, the total cost can span from linear

to quadratic and even more. In terms of space requirements, pre-filtering data

and then computing correlation requires at least O(n2) space for storing the

original and the filtered time series.

6. System management applications

We evaluate the performance of the CoHiVa model for three types of sys-

tem management applications that can benefit from an accurate and robust

evaluation of correlation: tracking analysis (Section 6.1), anomaly detection

(Section 6.2), and prediction studies (Section 6.3).

6.1. Tracking analysis

For system management, it is useful to evaluate how the correlation between

system resource measures evolves. To this purpose, correlation is evaluated on

a sliding window containing the most recent samples of time series. Several cor-

relation models can be adapted to tracking correlation analysis. We compare
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the performance of four correlation models: Pearson, LoCo, Pearson integrated

with a filter, and CoHiVa. The right size for the sliding window and the pro-

gression rule that eliminates older samples and incorporates new ones depend

on the application context. For the sake of a fair comparison we choose the

same window size and the same progress rule for all considered models.

As a summary of a larger set of experiments, we consider the time series

referring to the CPU utilization of the two Web servers in the architecture

described in Section 2. The results are reported in the four graphs of Figure 10.

The CoHiVa model (Figure 10(a)) maintains a stable index around 0.85 during

the entire interval of observation. As the two time series are correlated but

characterized by a high variability that tends to mask their correlation, the

CoHiVa results confirm that this model is accurate and robust even for tracking

analysis. On the other hand, the indexes of Pearson (Figure 10(b)) and of LoCo

(Figure 10(c)) are affected by low accuracy and low robustness. They oscillate

continuously and tend to conclude that the two time series are weakly correlated

for most of the time, while the opposite is true. The integration of the Pearson

model with a filter (Figure 10(d)) improves the accuracy of the Pearson results

but not their robustness, since the variability of the correlation index remains

too high.

6.2. Anomaly detection

There are several strategies for anomaly detection [4], but in this paper we

are interested to those founded on tracking correlation analysis (e.g., [3]) that

are based on an intuitive idea. If a correlation between two time series exists

and, at a certain point, this relationship disappears, we can assume that an

anomaly occurs in the observed system. Similar conclusions can be achieved

when two unrelated time series become correlated.

A visual exemplification of the transition from a normal to an anomalous be-

havior is presented in Figure 11 and Figure 12, respectively. Let us consider the

two servers in the architecture receiving the same number of requests through

a load balancer. Figure 11(a) shows the network packet rate during two days
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Figure 10: Performance of four correlation models: CoHiVa, Pearson, LoCo, and Pearson

integrated with a filter.

of normal behavior, and Figure 11(b) displays the results of the CoHiVa model

(continuous line) and the Pearson model (dotted line) in tracking the correlation

between the two time series. This figure reveals that the CoHiVa index is able

to capture the correlation between the two metrics despite the high variability

perturbing the data. On the other hand, the Pearson index remains lower than

0.5, thus concluding that there is no correlation between the two servers.

During the following two days reported in Figure 12(a), a system problem

in the load balancer causes one of the two serves to not receive requests. The

problem was temporary and normal service resumed after two days. In cor-

respondence with this event, the CoHiVa correlation index (continuous line in
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Figure 11: Normal behavior.

Figure 12(b)) shows a progressive drop to the extent that the two time series

are evaluated as no longer correlated. On the other hand, the Pearson index

(dotted line in Figure 12(b)) remains lower than 0.5 during the entire period of

sampling, thus resulting useless as a basis for tracking anomalies.
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Figure 12: Anomalous behavior in one server.

6.3. Time series prediction

Time series prediction is often adopted in system management contexts

(e.g., [31]). In order to establish whether a time series is predictable or not,

we measure its autocorrelation, that is, the correlation among values of a time

series at different lags in time. This information determines the presence of a

statistical dependency among the values of a time series. Prediction models are

considered applicable if the decay in the autocorrelation function (ACF) of the

time series is exponential [1]. The lag at which the autocorrelation function

becomes negligible determines how many past values it is convenient to include
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for the estimation of future values [28].

Let us consider as an example the time series at the bottom of Figure 11(a)

to illustrate the importance of a robust evaluation of the autocorrelation even for

highly variable data. To determine if the considered time series is predictable,

we compute its ACF through the CoHiVa and Pearson correlation indexes. Fig-

ure 13(a) shows the ACF obtained by computing the CoHiVa correlation index

at different lags ranging in the interval [1, 72]. The exponential decay of the

curve means that a relationship between the samples exists and therefore, by

following CoHiVa, we can conclude that the time series can be predicted. On

the other hand, by computing the ACF on the basis of the Pearson index, we

obtain the quickly decaying curve of Figure 13(b) suggesting that the time series

cannot be predicted.
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Figure 13: Autocorrelation functions.

To validate that the considered time series is actually predictable, we refer

to an autoregressive model (AR) that is a weighted linear combination of p

past values. These values are weighted by p linear coefficients that are the first

p values of the ACF function evaluated on time series. The p order of the

AR model is defined by a statistical test based on the partial auto-correlation

function that is described in [28].

We set AR parameters according to the ACF results obtained through Co-

HiVa and on the basis of this evaluation we conclude that the AR(12) is the best
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autoregressive model for the considered time series. In Figure 14, we show the

results of applying an AR(12) model for predicting 6 hours of network packet

rate on the basis of past data.
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Figure 14: Predicted time series.

The line before 18:00 represents past samples. After that hour, the line rep-

resents the future values that we aim to predict. The three bold lines represent

the predicted values including their confidence interval. We can appreciate that

the actual values are always contained in the prediction interval, hence the time

series is predictable as anticipated by the ACF evaluation through CoHiVa.

7. Related work

The task of capturing correlation between time series has received much at-

tention in literature. Many correlation models have been proposed [6, 8, 9, 5],

but all of them suffer of poor performance when dealing with some statistical

properties of time series. For example, the Pearson product moment [6] is not

effective in capturing non-linear correlations, because it assumes that time se-

ries are related through a linear dependency. The Spearman rank [8] and the

Kendall rank [9] manage linear and non-linear dependences, but the efficacy

of their results depends on data distributions [6]. The correlation index pro-
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posed in [5] overcomes these limits by looking for main patterns in data and

by computing correlation through an estimation of the pattern similarity. This

approach is promising, but it does not work when time series are characterized

by high variability. In highly variable domains, considering the main pattern of

a time series as the only information for capturing relationships between data is

inadequate for two reasons: more than one pattern typically carries on useful in-

formation about time series similarity; the main patterns of highly variable time

series do not include just trends, but they are likely to include perturbations

that mask correlation between time series.

An alternative approach to face the high variability problem is to reduce the

amount of perturbation before computing correlation, by applying random ma-

trices [32] or some filtering algorithms [10]. Unfortunately, this approach opens

more issues than solutions. Random matrices require the a-priori knowledge of

the distribution of the random matrix, as well as the possibility of modeling the

perturbation behavior, that is infeasible in most contexts. Filtering algorithms

are affected by the well known trade-off between the extent of perturbation re-

moval and the quality of the retained trends [20]. This complicates the choice of

the best filtering technique and of its parameters. In highly variable contexts,

an inappropriate choice of the parameters either results in reduced perturbation

removal compromising the correlation accuracy result, or in excessive smoothing

which nullifies the robustness of the models.

The CoHiVa model proposed in this paper solves most problems of exist-

ing algorithms. It does not require any assumption about data distribution as

Spearman and Kendall’s ranks do [8, 9], and its performance does not depend

on the type of dependency existing between time series, as it is necessary for

the Pearson model [6]. Unlike LoCo [5], CoHiVa does not rely upon a fixed

number of main patterns, hence it is able to disclose all relationships between

time series. By selecting all trend patterns and discarding patterns related to

perturbations, the proposed model is able to capture correlations among highly

variable time series without requiring any pre-analysis of time series character-

istics. All these features make CoHiVa an accurate and robust solution that can
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support a large range of applications for system management.

8. Conclusion

Having an accurate and robust model for capturing correlations between

time series is of crucial importance for system management. However, when

relationships between time series are hidden by highly variable perturbations,

the accuracy and robustness of existing correlation models are limited. We

propose a novel model for detecting correlations that is able to capture the

presence of dependency also between highly variable time series as those coming

from samples of monitored system resources. It is based on the extraction of

the main patterns of the time series, the removal of perturbations, and the

selection of just the trend patterns. The evaluation carried out on synthetic

and real datasets characterized by different levels of variability demonstrate

that the proposed model improves the state of the art in terms of accuracy

and robustness. Our promising results evidence the possibility of using the

proposed model as a support for system management applications in all domains

characterized by high variability where existing correlation models do not work.
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