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Abstract

Data centers providing modern interactive applica-

tions are enriched by autonomous management deci-

sion systems that are able to clone and migrate virtual

machines, to re-distribute resources or to re-map ser-

vices in real-time. At the basis of all these decisions,

there is the need of a continuous evaluation of the state

of system resources and of detecting when some rele-

vant changes are occurring. Unfortunately, the load of

interactive applications reaching the system is intrinsi-

cally heterogeneous with consequent highly variable ef-

fects on the resource behavior emerging from system

monitors. Hence, existing algorithms for online detec-

tion of state changes are affected by low precision and

scarce robustness when they are applied to modern con-

texts. We propose a novel model for online detection

of relevant state changes that combines a filtered repre-

sentation of the raw measures with adaptive detection

rules. Experiments carried out on real and emulated

data sets confirm that the proposed model is able to

timely signal all relevant state changes, to limit false

detections and, even more important, its results are ro-

bust in highly variable contexts.

1 Introduction

Any resource management mechanism related to
anomaly detection, quality control, request redirection,
diagnosis and fault detection, process migration, access
control requires a continuous evaluation of the resource
state and some real-time algorithm to detect as soon

as possible whether some relevant change is occurring
in the resource state.

We consider this problem in the specific context of
modern multi-core architectures hosting several inter-
active Internet/Web-based applications on virtual ma-
chines. Here, we can assume that the most impor-
tant system resources (CPU, memory, disk, network of
guest and host machines) are continuously monitored
and raw data sets are passed to some statistical algo-
rithm that decides whether to signal to the resource
management mechanism the occurrence of a relevant
state change.

State change detection algorithms are affected by
well known issues related to false positive and false
negative detections. Online versions are also subject
to temporal constraints. Moreover, in the considered
context, the typical problems are exacerbated by raw
data sets characterized by non-stationary and non-
deterministic features, variable variance of the distri-
bution, and likely affected by internal and external per-
turbations. The most common models for state change
detection, such as Particle Filtering [2], Kalman [6] and
Sequential Monte Carlo Method [16] are not effective in
the considered context because they require an antici-
pated statistical analysis of the data set to set the right
parameters of the equations [9]. Other state change de-
tectors, such as the threshold-based detectors, the She-
whart chart, the Exponential Weighted Moving Aver-
age (EWMA) chart, and the baseline CUSUM are in-
adequate as well when data sets are highly variable.
All of them tend to cause either a large number of false
detections or absence of detections depending on the
chosen parameters for the algorithm [3, 13]. In a pre-
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Figure 1. The problem of state change detec-
tion

vious work by the same authors [4], the proposal of an
adaptive state change detector demonstrated the pos-
sibility of solving the tradeoff between excessive delay
vs. false positive in non-stationary data sets. However,
this adaptive solution does not work well when high
variability and possible variable variance is combined
with non-stationary effects in data sets.

Let us evidence the typical issues that affect state
of the art detection algorithms through an example.
We consider the CPU utilization measures of a server
hosting five virtual machines. These measures are typ-
ically characterized by non-stationary behavior and by
several intervals of high variability as shown by the
spiked line in Figure 1. This figure contains also a line
denoting the eight relevant state changes (at samples
50, 150, 200, 250, 315, 440, 475, 540) that the detec-
tion algorithm should be able to signal and that we
consider as ground truth. We report the results of the
online adaptive version [4] of the detection CUSUM al-
gorithm demonstrated to be optimal in stationary con-
ditions [15]. The small vertical line with a circle at the
top denotes a false detection, that is, a signaled change
that does not correspond to a real state change. The
vertical line with a cross at the top denotes a right
detection. Figure 1 evidences the two main problems
that may affect an online state change detection algo-
rithm when the data set is non-stationary and highly
variable: several false detections (8 lines with a circle)
and high detection delays. For example, the algorithm
correctly signals a state change at sample 265 when
it actually occurred at sample 250, and 15 samples of
delay may be unacceptable in many contexts. Address-
ing these issues requires a novel model that pursues two
objectives:

• an online filter that removes perturbations from

the raw data set and produces a smoothed data
representation;

• an adaptive detection model that is able to modify
dynamically its parameters.

The real-time detection model we propose in this paper
combines an online Wavelet-based data representation
for the filtering phase and an adaptive implementation
of the CUSUM for the detection phase. We demon-
strate that the proposed Wavelet-based adaptive model
is able to guarantee the best results for several statis-
tical characteristics of the time series in simulated and
real contexts, and it satisfies the temporal constraints
imposed by the real-time management mechanisms.

The rest of the paper is organized as follows. Sec-
tion 2 describes the proposed detection model. Sec-
tion 3 presents the performance metrics and results of
the proposed model against state of the art algorithms
applied to several sets of emulated data. Section 4 an-
alyzes the results of the proposed model for real data
sets. We conclude the paper with some final remarks.

2 State change detection model

Many resource management mechanisms are inte-
grated with algorithms that are able to decide whether
some relevant change has occurred in the profile of
some monitored system resources. We are interested to
these algorithms applied to non-stationary and highly
variable data sets, where each data set is a time series
that at sample i can be denoted by {yi} = (y1, . . . , yi).
In the considered contexts, it is impossible to identify a
stable state if not for short periods [1]. Hence, the state
of a resource is a reference representation (e.g., mean,
variance, confidence interval) that is valid for the spe-
cific interval during which the statistical attributes of
the time series do not change significantly. Hence, we
can see the time series as a sequence of consecutive sta-
ble states, where a relevant state change corresponds to
a significant variation of the statistical characteristics
of the time series [3].

The performance of state change detection algo-
rithms is highly dependent on the statistical char-
acteristics of the data set [13]. Because of the in-
herent variability and non-stationary behavior of the
monitored processes related to interactive systems, ex-
isting algorithms achieve poor results. We propose
a new algorithm, namely Wavelet-Adaptive CUSUM,
that integrates and extends two well known models
(Wavelet [12] and CUSUM [15]) in an adapted ver-
sion. This algorithm filters raw data through an online
Wavelet model (Section 2.1). The denoised representa-
tion of the raw measures is then passed to an adaptive

2



and online implementation of the CUSUM detection
rule that must signal just relevant state changes as soon
as possible (Section 2.2).

2.1 Filtering model

We claim that non-stationary and highly variable
data sets require online statistical techniques that are
able to distinguish and isolate all the perturbations
from the main features of the time series. The liter-
ature presents dozens of data filters, but few of them
can be suitably used in real-time contexts. For exam-
ple, Exponential Weighted Moving Average (EWMA)
models are applied in several online contexts, such as in
information and computer systems, and financial and
social applications [1, 11]. They are appreciated for
their simplicity and computational efficiency, but they
correspond to single scale low pass filters. As a con-
sequence, if a time series contains features at multiple
scales, EWMA filters must tradeoff the extent of noise
removal with the quality of the retained features [14].
In a typical context such as that shown in Figure 1, this
would either results in reduced noise removal and too
many false detections or in excessive smoothing which
would cause too many negative detections.

Non-linear and multiscale models exhibit better per-
formance than the linear counterparts. In this pa-
per, we are interested to the Wavelet-based models
that have been shown to be nearly optimal for vari-
ous error norms and smoothness of the resulting time
series [8]. The main motivation for this choice is that
Wavelet denoisying exploits an orthonormal basis local-
ized both in space and frequency which allows a noise
reduction without smoothing the time series features.
On the other hand, the solutions based on exponential
smoothing work only in the frequency domain. As a
consequence, we do not pass to the state change de-
tector the original data set {yi}, but a filtered version
{xi} [14], where {xi} retains the significant features of
the original data but it removes most of the variabil-
ity that can be ascribed to short-term perturbations.
We regard {xi} as the data representation of the mon-
itored process obtained through an online version of
the Wavelet transformation [14]. It represents a time
series as the sum of a shifted and scaled version of a
base Wavelet function ψ and a shifted version of a low-
pass scale function φ. Through a proper choice of the
Wavelet and scale functions, the resulting families of
functions are:

ψmk(i) =
√
2−mψ(2−mi− k) (1)

φmk(i) =
√
2−mφ(2−mi− k) (2)

where m and k are the dilation and translation param-
eters from an orthonormal basis, respectively. Hence,
the time series {yi} can be conveniently rewritten as
follows:

yi =
2
−Ln∑

k=1

aLkφLk(i) +
L∑

m=1

2
−mn∑

k=1

dmkψmk(i) (3)

where aLk is the k-th scaling function coefficient at
the coarsest scale L, dmk is the k-th Wavelet coeffi-
cient at scale k, and n is the length of the time series
considered for the analysis. We set the coarsest scale
L = 4 as suggested in [14]. The coefficients m and k

are computed by the inner product of {yi} with the
base functions. Computation of the transform and its
inverse can be done in O(n). A key feature of this rep-
resentation is that the Wavelet decomposition captures
significant signal features in a few relatively large coef-
ficients, while perturbations result uncorrelated. As a
result, perturbations - and perturbations only - can be
effectively removed by setting equal to zero the Wavelet
coefficients smaller than a threshold.

In summary, we obtain the data representation {xi}
of the original time series {yi} through three main
steps. We apply to {yi} the standard Haar function [5]
as a base Wavelet, which consists of a simple rectangu-
lar impulse function. Then, we set to zero the Wavelet
coefficients which are lower than a suitable threshold
tm, where m is the dilation parameter. As indicated
in [14], we set the threshold tm = σm

√
2 log n where

σm = 1

0.6745
median{|dmk|}. Finally, we compute the

inverse Wavelet transform to obtain {xi}.
This filtering technique has been proven to be su-

perior to other approaches [8], but in literature it is
restricted to offline operations. We consider an online
version which takes into account a moving window of
dyadic length to estimate the Wavelet parameters and
to compute {xi}. At each sample i, the filtered value
xi is computed as follows:

1. consider the set {yi} = (yi−M+1, . . . , yi) of maxi-
mum dyadic length, where M = ⌊log2 i⌋;

2. compute the filtered sequence (z1, . . . , zM ) of the
set {yi} through the three previous steps;

3. set xi = zM , that is, set the actual filtered value
equal to the last value of the filtered sequence com-
puted at step 2.

This online version can be computed in O(n log n)
steps (see [14] for details), hence it is suitable to tempo-
ral constraints required by real-time management sys-
tems.
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2.2 State change detection

There are many state change detection algorithms
proposed in literature. Among them, we refer to the
well known CUSUMmodel that has been demonstrated
to achieve optimal results in specific conditions of the
data set [15]. As most of previous algorithms, the base-
line version of CUSUM works offline and, as a conse-
quence, we can set its best parameters on the basis of
the statistical features of the data set [3]. We proposed
an online version of the CUSUM model (Adaptive
CUSUM) that was able to compute dynamically its pa-
rameters [4]. That model improved the previous results
but preliminary experiments (not reported for space
reasons) demonstrated that it does not work well when
the data set is highly variable. For these reason, we
propose to apply the adaptive version of the CUSUM
not to the raw data set but to the data representation
emerging from the application of the online Wavelet-
based filter. We name Wavelet-Adaptive CUSUM the
combination between the Adaptive CUSUM and the
online Wavelet filter. If we consider that a state at sam-
ple i is represented by its mean value µi (continuously
estimated online, as suggested in [4]), the adaptive im-
plementation of CUSUM for detecting an increase in
the mean of the Wavelet-based representation {xi} uses
the following test statistics (the case for detecting a de-
crease is dual):

g+0 = 0 (4)

g+i = max{0, g+i−1 + xi − (µi +K)} (5)

The gain function g+i accumulates deviations of the
Wavelet representation xi from the online estimation
of the state value µi that are greater than a pre-
defined threshold K, and resets to 0 on becoming neg-
ative. The term K, which is known as the allowance
or slack value, determines the minimum deviation that
the statistic g+i accounts for. A positive change is sig-
naled when g+i exceeds a threshold H. To achieve a
good detection quality, the suggested value for K is
∆

2
, where ∆ is the minimum shift to be detected. The

choice for H is explained below. A two-sided test to
detect increases and decreases is obtained by apply-
ing the tests in 5 for increase and its dual version for
decreases.

In the considered environment, that is characterized
by non-stationary and highly variable time series, it
is important to adopt an adaptive version of CUSUM
to be combined with the online Wavelet model. This
requires two interventions: a dynamic estimation of the
new state representation, and a dynamic evaluation of
the H parameter.

The reference value of a stable state can be any sta-
tistical representation of the corresponding data set.
In this paper, we consider the mean value µi as the
reference value. Hence, we find convenient to refer to
the Exponential Weighted Moving Average (EWMA)
for the dynamic estimation of the new state representa-
tion because this model is able to track the slow varying
mean even in the presence of non-stationary monitored
samples. As soon as a relevant state change is signaled,
we estimate online the reference value of the new state
µi as follows:

µi =

{

µi−1 +K +
g
+

i

N+ if g+i > H

µi−1 −K −

g
−

i

N−
if g−i > H

(6)

where N+ (N−) denotes the number of steps elapsed
since the last time g+i (g−i ) was set to zero, that is
N+ = i− inf{j | g+j = 0} and similarly for N−.

The choice of the H value is crucial for the perfor-
mance of the algorithm because the number of false
detections directly depends on H and on the standard
deviation σ of the time series. In the basic CUSUM
version, the suggested value for H is estimated on the
basis of the Kullback approximation [3] that returns
H = 5σ, where σ is an estimation of the standard de-
viation during a previous stable interval of the time
series [15].

On the other hand, when the standard deviation
may change and when the time series perturbations
reach high intensity (often equal or higher than the
state change magnitude), any fixed choice for H is in-
appropriate. We propose an adaptive evaluation that
is based on the Sigmund approximation explicitly de-
voted to manage time series characterized by high per-
turbations [3]. In this equation, we introduce a con-
tinuous online estimation of the standard deviation at
sample i as in [10] that is, σi = E[| {yi}−E[{yi}] |]. It
is computed on the same sliding window of data that is
used for the online estimation of µi. More details are
reported in [4].

3 Performance comparison

In this section, we present some existing detection
algorithms for comparison purposes (Section 3.1) and
the main performance metrics (Section 3.2) computed
for their evaluation. Then, we evaluate the perfor-
mance of the state change detection algorithms on
a wide range of data sets emulating non-stationary
and highly variable profiles related to system resources
(Section 3.3).
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3.1 Other algorithms

We outline other popular state change detection al-
gorithms based on CUSUM that can be applied to on-
line data sets and that we consider for comparison pur-
poses in our analysis.

The Baseline CUSUM applies the CUSUM detec-
tion rule on raw data [13, 15]. Its detection quality is
limited by the high variability of the data set and by
the static choice of parameters.

The Adaptive CUSUM adds an adaptive choice
of the CUSUM parameters [4] but the detection rule
works on monitored samples. Its performance are lim-
ited by the absence of a data filter.

The first idea is to add to the previous algorithm an
online filter that is based on an Exponential Weighted
Moving Average (EWMA) computed on the last n

samples [13]. We denote the data representation
as EWMAn and the overall algorithm as EWMAn-

Adaptive CUSUM. The performance of this algo-
rithm are limited by the linearity of the data represen-
tation in highly variable contexts. Moreover, it is too
much sensitive to the choice of n. Using a small set
of n past values offers a more reactive data represen-
tation that tends to minimize the detection delay but
at the cost of a high number of false detections. In-
creasing the number of n, the data representation gets
more smoothed; this causes a lower number of false
detections but higher detection delays and more false
negatives. In the considered context where data sets
are highly variable and non-stationary, it is impossible
to find a right value for n that is able to guarantee reli-
able and efficient results. In this paper, we consider two
different models: EWMA5-Adaptive CUSUM should
limit the delay for detection at the cost of a high num-
ber of false detections; EWMA30-Adaptive CUSUM
should provide a low or null number of false detections,
although it may cause high detection delays.

3.2 Performance metrics

We evaluate the detection quality of all the algo-
rithms in terms of mean delay for detection and per-

centage of false detections [3]. We are not interested to
report results about false negative detections because
in the time series used in this paper all considered al-
gorithms are not affected by this problem.

The mean delay for detection, T , is related to the
ability of an algorithm to detect a state change when
it actually occurs. It quantifies the time delay for the
detection of a new state through the distance between
the sample at which the model signals a state change
and the actual sample of change in the ground truth

and computes the mean over all the state changes. For
example, let us consider a time series with X state
changes. Let [c1, . . . , cX ] be the actual samples of
change in the ground truth and [c∗1, . . . , c

∗

X ] the sam-
ples at which the model detects the changes. The mean
delay for detection is defined as:

T =

∑X

i=1
(c∗i − ci)

X
(7)

Good detection algorithms should minimize T .
The percentage of false detections P is obtained by

the ratio between the number of false detections and
the total number of detections signaled by the state
change detector. The changes that are signaled cor-
rectly by the detection algorithm are called true posi-

tives (TP ), otherwise they are classified as false posi-

tives (FP ). Hence, P can be defined as:

P =
FP

TP + FP
∗ 100 (8)

where (TP + FP ) is the total number of detections.
A value of P equal to 0 means that the algorithm de-
tects only relevant state changes, while high values of
P indicate that the detection algorithm signals many
irrelevant state changes.

The best algorithm for state change detection should
minimize the detection delay and the percentage of
false detections. As there is a well known tradeoff be-
tween these two measures and the minimization of both
of them is impossible, the best algorithm should find
an acceptable compromise.

3.3 Comparative results

We compare the detection quality of the considered
algorithms for a wide range of data sets emulating non-
stationary and highly variable profiles related to system
resources. To facilitate the algorithm comparison, the
profile is normalized so that state increases/decreases
are denoted by a unit value. All detection algorithms
tend to diminish their detection quality for increasing
variability of the time series. Hence, it is important
to apply the algorithms on time series characterized
by different levels of variability. The most important
statistical properties that characterize a time series are
the dispersion σ and the correlation ρ of the noise com-
ponent [7]. To demonstrate the importance of using a
filtered data representation to improve the detection
quality, we evaluate the performance of the detection
algorithms as a function of several values of σ and ρ,
but our main interest is on time series characterized by
high dispersion and correlation of the noise component,
for example σ > 0.5 and ρ > 0.1.
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EWMA5 EWMA30 Wavelet

σ Baseline CUSUM Adaptive CUSUM Adaptive CUSUM Adaptive CUSUM Adaptive CUSUM

0.1 44 39 0 0 0

0.2 52 40 0 0 0

0.3 63 42 2 0 0

0.4 75 57 6 0 0

0.5 79 64 15 0 0

0.6 89 75 33 0 2

0.7 93 78 49 0 8

0.8 100 80 55 0 8

0.9 100 85 69 0 13

1.0 100 97 74 0 19

Table 1. Percentage (%) of false detections - ρ = 0.2

EWMA5 EWMA30 Wavelet

σ Baseline CUSUM Adaptive CUSUM Adaptive CUSUM Adaptive CUSUM Adaptive CUSUM

0.1 1.29 1.19 6.17 27.75 5.35

0.2 3.15 3.10 6.78 28.15 8.62

0.3 4.12 4.61 8.03 30.52 10.75

0.4 4.89 5.55 8.43 30.57 11.48

0.5 4.86 6.12 9.42 31.97 13.10

0.6 6.65 7.75 10.18 33.82 14.40

0.7 6.75 7.87 10.98 35.32 15.82

0.8 7.00 9.00 13.80 40.80 16.71

0.9 10.00 12.33 14.26 44.90 17.28

1.0 11.50 13.87 14.51 45.73 18.12

Table 2. Mean delay for detection - ρ = 0.2

In Table 1 we report the percentage of false detec-
tions when the correlation of the noise component ρ
is equal to 0.2. This table demonstrates the expected
trait of all the detection algorithms: at higher noise
dispersions, the percentage of false detections increases
as well. However, the results are quite different. The
models working on raw data sets (Baseline CUSUM
and Adaptive CUSUM) reach a percentage of false de-
tections always higher than 0.4 even for low σ, and they
become useless for highly variable contexts. Similar un-
reliability is shown by the EWMA5-Adaptive CUSUM.

The introduction of a filtered data representation
impacts positively on the percentage of false detec-
tions. In particular, EWMA30-Adaptive CUSUM and
Wavelet-Adaptive CUSUM are able to achieve good
performance in time series characterized by a noise dis-
persion σ ≤ 0.5 and high correlation of noise. Surpris-
ingly, EWMA30-Adaptive CUSUM that uses a more
smoothed data representation, is able to avoid false de-
tections. However, this result comes at a price because
we know that a trade-off exists. We have to consider
also the mean delay results, that are reported in Ta-
ble 2 for all the considered algorithms. The EWMA30-
Adaptive CUSUM is affected by a mean delay of 45
samples in the worst case. This result shows that this
algorithm is inadequate to support real-time manage-
ment decisions. Moreover, it confirms that the choice
of the filtering technique is crucial for online state de-

tection models. In highly variable contexts, just the
proposed Wavelet-Adaptive CUSUM guarantees an ef-
ficient tradeoff between a low percentage of false de-
tections and minimum delay. In the next section we
aim to confirm these positive results by applying the
proposed algorithm to data sets coming from monitors
of real system resources.

4 Experimental results

We applied the proposed algorithm to the resource
measures of an Internet data center hosting Web-based
applications. Here we report a subset of significant
results. Figure 2(a), Figure 3(a) and Figure 4(a)
show the data sets related to CPU utilization, network
throughput and system call of a server hosting multiple
guest servers, respectively. In these figures, the hori-
zontal/vertical dotted line represents the ground truth,
that is, the sequence of relevant stable states that the
state change detectors should be able to signal. (In
particular, the significant state changes occur at sam-
ples [61, 105, 139, 238, 363, 524] in Figure 2(a), at sam-
ples [37, 78, 104, 171, 301, 417, 508] in Figure 3(a) and
at samples [25, 59, 98, 139, 164, 211, 332, 488] in Fig-
ure 4(a)). The results of the proposed Wavelet-
Adaptive CUSUM algorithm are reported in the corre-
spondent figures (b). These figures contain two types
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Figure 2. CPU utilization
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Figure 3. Network throughput

 0

 20000

 40000

 60000

 80000

 100000

 120000

 0  100  200  300  400  500  600

S
y
s
te

m
 C

a
ll

Sample

Ground truth

(a) Resource measures

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 100  200  300  400  500  600

S
y
s
C

a
ll 

R
a
te

Sample

Data representation
Ground truth

True Positive detection
False Positive detection

(b) State change detections

Figure 4. System call

of information: they report the data representation ob-
tained through the online Wavelet filter and the state
change detections that may be true or false.

It is interesting to observe that the Wavelet model
applied to any data set is able to adapt the data rep-
resentation to the system state conditions and to filter
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out the main data perturbations. In all the reported
instances, the proposed algorithm detects timely all the
state changes (there is no significant delay). Even more
important, there is almost no false detection: indeed,
just one at sample 433 in the system call case shown in
Figure 4(b). This false detection is caused by a huge
spike in the raw data that even the Wavelet model is
unable to filter. We can add that, in the same condi-
tions of the considered data sets, no other state change
detection algorithm is able to achieve similar results
because of excessive delay or excessive number of false
signals.

The ability of guaranteeing good detection qual-
ity in extremely different and highly variable contexts
demonstrates the robustness of the Wavelet-Adaptive
CUSUM and its ability to provide a reliable support to
real-time resource management decisions.

5 Conclusions

Modern data centers are equipped with real-time
management decisions relying on continuous monitors
of the system resources and detection algorithms that
evaluate the resource states and relevant changes. The
problem is that hosting multiple interactive applica-
tions causes system resource profiles characterized by
non-stationary and highly variable behavior. We have
proposed a new state change detection algorithm that
is specifically tailored to work online in noisy contexts
and that is characterized by low computational com-
plexity. The proposed algorithm integrates an online
version of the Wavelet model to filter the measures
flowing from the system monitors and an adaptive ver-
sion of the CUSUM statistical test as a state change
detector. All experiments carried out on emulated and
real data sets demonstrate that the proposed solution
is robust and effective. It signals just relevant state
changes and it is not affected by false negative detec-
tions. Moreover, it guarantees an efficient solution to
the tradeoff between the percentage of false detections
and the detection delay that previous algorithms do
not address well.

Acknowledgements

The authors acknowledge the support of MIUR-
PRIN project DOTS-LCCI ”Dependable Off-The-Shelf
based middleware systems for Large-scale Complex
Critical Infrastructures”.

References

[1] M. Andreolini, S. Casolari, and M. Colajanni. Models
and framework for supporting run-time decisions in
web-based systems. ACM Tran. on the Web, 2(3),
2008.

[2] M. Arulampalam, S. Maskell, N. Gordon, and
T. Clapp. A tutorial on particle filters for online
nonlinear/non-gaussian bayesian tracking. Signal Pro-
cessing, IEEE Transactions on, 50(2), 2002.

[3] M. Basseville and I. Nikiforov. Detection of Abrupt

Changes:Theory and Application. Prentice-Hall, 1993.
[4] S. Casolari, M. Colajanni, and F. Lo Presti. Runtime

state change detector of computer system resources
under non stationary conditions. In Proc. of 17th

Int. Workshop on Modeling, Analysis, and Simulation

of Computer and Telecommunication Systems, Sept.
2009.

[5] C. K. Chui. An Introduction to Wavelets. Academic
Press, 1992.

[6] C. K. Chui and G. Chen. Kalman filtering with real-

time applications. Springer-Verlag New York, Inc.,
1987.

[7] M. Dobber, R. Van det Mei, and G. Koole. A pre-
diction method for job runtimes in shared processors:
Survey, statistical analysis and new avenues. Perfor-

mance Evaluation, 2007.
[8] D. L. Donovo, I. Johnstone, G. Kerkyacharian, and

D. Picard. Wavelet shrinkage: Asymptotia? Journal

of the Royal Statistical Society B, 57(2), 1995.
[9] F. Gustafsson. Adaptive Filtering and Change Detec-

tion. John Wiley and Sons, 2000.
[10] V. Jaconson. Congestion avoidance and control. In

Proc. of SIGCOMM’88, volume 21, Stanford, CA,
Aug. 1988.

[11] M. Kendall and J. Ord. Time Series. Oxford Univer-
sity Press, 1990.

[12] S. G. Mallat. A theory of multiresolution signal
decomposition: The wavelet decomposition. IEEE

Trans. on Pattern Analysis and Machine Intelligence,
11(7), 1989.

[13] D. C. Montgomery. Introduction to Statistical Quality

Control. John Wiley and Sons, 2008.
[14] M. N. Nounou and B. Bakshi. On-line multiscale filter-

ing of random and gross errors without process mod-
els. American Institute of Chemical Engineers Jour-

nal, 45(5), May 1999.
[15] E. S. Page. Estimating the point of change in a con-

tinuous process. Biometrika, 44, 1957.
[16] R. Y. Rubinstein and D. P. Kroese. Simulation and

the Monte Carlo Method. New York: John Wiley &
Sons, 2007.

8


