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Abstract—The identification of significant changes in system
resource behaviors is mandatory for an efficient management
of data centers. As the dimension of modern data centers
increases, the evaluation of state change detections through
traditional algorithms becomes computationally intractable.
We propose a novel approach that characterizes the statistical
properties of the resource measures coming from system
monitors, classifies them, and signals a change only when
there is modification of the resource classification. This method
diminishes the computational complexity and reaches the same
detection accuracy of traditional approaches as demonstrated
by several results obtained in real enterprise data centers.
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I. I NTRODUCTION

Most management systems related to enterprise data cen-
ters and private cloud architectures are activated after a
notification that a behavioral change has occurred in some
server resource(s). Efficient management requires suitable
algorithms able to take decisions on the basis of actual
and past behavior of the server resources. For this reason,
the most important resources are continuously monitored
and data are passed to some statistical methods that decide
whether to signal the occurrence of a change.

Existing models and frameworks that signal relevant
changes in server operations by working on the entire data
sets of monitored resources [1], [2] are inadequate to support
system management decisions. We should consider that,
even in a medium size infrastructure, huge amounts of data
streams referring to different system resources may reach a
change detector that should analyze, model and treat them
at different temporal scales (from days to weeks) and should
support prompt reconfigurations motivated by changes in
system and workloads [3]. On the other side, solutions that
avoid the analysis of all monitored measures by working on
aggregated visions of subsets of heterogeneous servers [3]
prevent both reliable change detections and the identification
of servers that experienced that changes. Therefore, two
main problems limit the applicability of present approaches
for change detection and motivate this paper:dimensionality
andheterogeneity of the data set.

This paper proposes a novel approach to address issues
related to the identification of relevant behavioral changes
in enterprise data centers that must be found on the basis
of several and heterogeneous data streams. The first goal

is to consider just the most important data streams, where
the importance is measured in relation to their impact on the
overall system behavior. After having obtained the most rele-
vant data, we classify them by distinguishing under-loaded,
deterministic or random behaviors so that we characterize
servers on the basis of their main behavioral nature. We
take advantage of the previous characterization as a basis
for evaluating the dynamic evolution at the level of servers;
this periodic evaluation allows us to signal in a simple and
accurate way the most significant behavioral changes.

The proposed approach has three main advantages: it does
not require to model and analyze all resource measures of
each server; it makes no a-priori assumptions about the
statistical characteristics of data; it is flexible enough to
detect behavioral changes at different time scales. These
features guarantee that our method is appropriate for behav-
ioral change detection in large enterprise data centers where
continuous changes and high dimensionality of data are the
norm.

The remainder of this paper is structured as follows.
Section II presents the behavioral change problem definition
and provides the necessary foundations of the proposed
methodology. This is presented in Section III, where we
give a detailed description of the proposed approach, by
presenting the steps taken to identify relevant changes in
server behavior. Section IV applies the solution to a specific
case study, by characterizing the server behavior and detect-
ing behavioral changes on a typical enterprise data center.
Concluding remarks are presented in Section V.

II. PROBLEM DEFINITION AND FUNDAMENTAL CHOICES

Most management systems referring to enterprise data
centers and private cloud architectures require algorithms
that are able to decide whether a relevant change has
occurred in the profile of some monitored system resources.
In this context, change detection should reduce the operator
involvement in favor of model-driven decision systems.
Existing models and frameworks are inadequate to support
management decisions that have to gather, filter and analyze
huge amounts of heterogeneous and variable data streams,
because they work on the entire data set of measures coming
from server monitors.

The goal of the methodology of interest for this paper is
to detectbehavioral changes in server resource measures, in
terms of a collection of related data instances that behaves



anomalously with respect to a behavior observed so far on
the data stream [4]. The detection of behavioral changes
requires the identification of a set ofbehavioral attributes
and to find whether and when these attributes change. We
identify the behavioral attributes in thestatistical properties
of monitored measures (e.g., correlation, standard deviation,
mean value), that represent the type of relationship between
data instances. When the observed statistical properties of
a data stream significantly differ from the expected be-
havior, a change is declared. Let us evidence an example
of behavioral change in Figure 1. We consider the CPU
utilization measures of a server hosting five virtual machines.
The data show a periodic behavior during the first 1000
samples and then suddenly change to a stable behavior.
This is a typical example of behavioral change that, for
an efficient management of the enterprise data center, the
detection algorithm should promptly signal.
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Figure 1. Example of a behavioral change.

This paper provides a methodology for detecting behav-
ioral changes in large data centers and private cloud architec-
tures. These systems are characterized by a high number of
heterogeneous hardware and software components (proces-
sors, memories, storage elements, applications) that operate
at different time scales (spanning from days to entire weeks),
and can be subject to prompt reconfigurations due to changes
in system, security and business policies. In these conditions,
our methodology addresses the challenge of detecting behav-
ioral changes in suitable subsets of servers, interacting and
competing for the same components at spatial, functional
or application level. Our proposal works on performance
measures sampled at suitable temporal intervals, ranging
from seconds to few minutes in relation to the different time
scales of interest. It is mandatory to remark that the proposed
change detector is oriented to enterprise data centers, to
the so called private cloud-based infrastructures, and to any
context where the system manager has full control on the
resources assigned to different services. On the other hand,
in the present version, the proposed approach cannot be
applied to cloud data centers where the cloud provider can

assign and move virtual machines from one host/cluster to
another one without informing the cloud consumer. Our
methodology signals changes when the behavior of a server
departs from normality, by using two types of supports for
facing the dimensionality and heterogeneity problems: the
analysis of a small set of all and only informative data; the
classification of streams among negligible, deterministicand
random streams so to evidence their statistical behavior.

The first stage is to evaluate the impact of each data
stream on the system activity, so to distinguish important
and not-relevant sources of information. Eliminating the less
important data streams diminishes the system management
complexity. Since the resource measures in a data center
may be highly variable and this characteristics influences
the change detection, we consider variability as the main
statistical property to discriminate between relevant andnot-
relevant information. The variability is typically expressed in
terms of process variance or in terms of coefficient of varia-
tion, and it quantifies the degree of activity of a process even
as a measure of the system health. Indeed, the variability of
processes is used to characterize the system behavior [5] in
many different natural and non-natural processes, such as the
flow of water through a river basin, the traffic of highway
systems, or the Internet traffic. In [6], the process variance
is used to classify heterogeneous nodes for revealing the
impact of external requests on the system. In this paper,
we defineenergy the index of variation of the monitored
processes, and we use this energy information in order to
characterize the statistical nature of server behaviors. We
reduce the dimensionality of the data set by evaluating
its variability and by applying thePrincipal Component
Analysis (PCA) [7] that allows us to remove low energy
information and to consider just relevant data.

As a second stage, we characterize the resource behavior
emerging from the monitored data in three main categories:

• deterministic behavior, whose behavioral attributes are
systematic trends and periodic patterns that are pre-
dictable and possible to model;

• random behavior, presenting isolated and occasional
bursts and dips, spikes and noises;

• negligible behavior, that gives a little contribution to
the overall system behavior.

Figures 2(a), (b) and (c) report an example of the three men-
tioned statistical behaviors in the CPU utilization sampled
from a Web server, an application server and a database
server of the data center, respectively.

This classification is quite important because it allows
us to identify the actual behavior of a server and to
assign it to one of the three categories. The change in
time in the characterization of a server is symptomatic
of a significant behavioral change in its functioning. The
identification of this type of changes is obtained through our
methodology without the need of analyzing all numerous
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(c) Deterministic

Figure 2. Examples of server behaviors.

and heterogeneous data streams and without the loss of
relevant information.

III. M ETHODOLOGY

The proposed detection method employs statistical anal-
yses of data developed at consecutive intervals of time in
order to signal a change in the behavior of some servers. At
time intervalt, the set of collected sampled measures origi-
nates a matrixXt that forms a high dimensional multivariate
structure. It is an×p matrix, wheren is the number of sam-
ples collected among two consecutive intervals (for example,
n = 2016 if we consider the five minutes samples enclosed
in an one-week interval), andp is the number of considered
system resource measures. To each resource matrixXt

we associate a vectorBt = [bt,1, . . . , bt,p] containing, the
characterization of each resource measure at time intervalt,
that is, bt,k ∈ {Deterministic, Random,Negligible} for
1 ≤ k ≤ p. At the next time intervalt + 1, we collect
the new set of observationsXt+1 and check whether the
Bt+1 vector characterizes the server behaviors as at timet.
When a relevant change affects some servers, their statistical
characterization changes andBt 6= Bt+1. This deviation
is symptomatic of a relevant change that we are able to
capture simply by looking at the differences in the elements
of two vectors. It is important to remark that the proposed
approach shows only major changes through the analysis
of a small set of data. However, a lack of change in the
statistical characterization does not mean that a server did
not experience any change. We now detail how to build
the Bt vectors. At each time intervalt, our methodology
implements two steps on collected data:dimensionality
reduction andheterogeneity inspection.

The first step is required since the data sets collected
from the server log files of modern enterprise data centers
form a multivariate structure characterized by thousands of
dimensions and more. In these structures and associated
coordinated spaces, any reliable decision requires a pre-
liminary identification of the most relevant information for
management purposes. A common approach is to find a new
coordinate space consisting of a lower dimension that is
representative of the original space [8]. When a structure can

be approximated through a smaller number of dimensions in
a way that minimizes the error and the loss of information,
we can refer to the smaller number of dimensions as the
structure intrinsic dimensionality. In literature [9] several
models exist. In our implementation, we choose the PCA [7]
since we are mainly interested to measure the system energy
in term of variance, and the PCA is the best model to reveal
the intrinsic structure of data set on the basis of its variance.

As data sets of resource measures are statistically hetero-
geneous, before applying PCA to the collectedXt matrix it
is important to normalize them to time series characterized
by zero mean and unit variance, as suggested in [10]. PCA
maps Xt on a new set of axes [8] called components.
Calculating the components is equivalent to solving the
symmetric eigenvalue problem for the matrixΨt = XT

t Xt,
that is a measure of the covariance of the time series
deriving from sampled measures. In practice, at samplei

each componentvi is the i-th eigenvector computed from
the spectral decomposition ofΨt [10]:

Ψtvi = λivi i = 1, . . . , p (1)

whereλi is the eigenvalue corresponding to the eigenvector
vi and represents the magnitude of the variation along each
componentvi. We quantify theenergy, σi, associated to
the componentvi as the percentage of variation related
to its eigenvalueλi, that is, σi = λi∗100

Pp

j=1
λj

. As Ψt is
symmetric positive definite, its eigenvectors are orthogonal
and the corresponding eigenvalues are non-negative real
numbers. By convention, the eigenvectors are unit norm and
the eigenvalues are arranged from large to small, so that
λ1 ≥ λ2 ≥ . . . ≥ λp.

Once mapped the data set into their component space,
we have to compute the transformed data considering one
component at a time. In this new dimensional space, a
dimension ui (i = 1, . . . , p) is defined as a vector of sizep
obtained by the contribution of the data set matrixXt and
of the componentvi. As suggested in [10], this vector is
normalized to unit length by dividing it by

√
λi. Hence, for



each principal componentvi we have:

ui =
Xtvi√

λi

i = 1, . . . , p (2)

The above equation shows that all server behaviors, when
weighted byvi, produce one dimension of the transformed
data. Thus the vectorui captures the temporal variation
common to all server measures along the componentvi.
Since the components are ordered with respect to their
contribution to the overall energy,u1 captures the strongest
temporal trend common to all server measures,u2 captures
the next strongest, and so on.

The energy characterizing each component can be used to
reduce the data dimensionality by ignoring the less variable
components of the structure. In order to choose how many
component it is useful to retain, we pursue the criterion
of the percentage of variability expressed by the principal
components [11]. We determine in advance the amount of
residual variability that we want tolerate and then exclude
the residual components. Finding that only a small set ofr

dimensions are relevant implies thatXt can be mapped on a
r-dimensional subspace ofR

p and thatr ≪ p is the intrinsic
dimension ofXt. At every time intervalt, this result allows
the method to distinguish between therelevant dimensions
Ut = {u1, . . . , ur} that are contributions shared by all re-
source measures on ther principal components, and thenot-
relevant dimensions Ut = {ur+1, . . . , up} corresponding to
the less important components in terms of system energy.

The second step investigates data heterogeneity with the
goal of characterizing server behaviors at time intervalt

and register in theBt vector their deterministic, random
or negligible nature. After the classification in relevantUt

and not-relevantUt dimensions, we distinguish the relevant
dimensions betweencorrelated UC

t and low-correlated UL
t

by evaluating the autocorrelation function (ACF) of each
relevant dimensionUt as in [12] and many other con-
texts [13], [14]. Figure III(a) reports an example of dimen-
sion exhibiting correlated periodicity and seasonal fluctua-
tions because of diurnal activity, as well as the difference
between weekday and weekend activity. The high values of
the autocorrelation function of Figure III(b) confirm that the
dimension is correlated. Figure III(a) reports an example
of a dimension that is classified as low-correlated, since
it presents the quick decay of the ACF values shown in
Figure III(b). This dimension is characterized by random
perturbations and/or spikes varying in time and intensity.
We use the classification of the relevant dimensions between
correlated and low-correlated to evaluate three behavioral
values for each data stream referring to one server resource.

At every time intervalt and for every server resource
measurek (1 ≤ k ≤ p), the idea is to add all the
contributions for each of the three types of dimensions and
then to evaluate the maximum.
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Figure 3. Example of correlated dimension.
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Figure 4. Example of low-correlated dimension.

• Dt,k =
P

j
vj , ∀j | uj ∈ UC

t denotes the contributions
provided by the relevant correlated dimensions;

• Rt,k =
P

j
vj , ∀j | uj ∈ UL

t denotes the contributions
provided by the relevant low- correlated dimensions;

• Nt,k =
P

j
vj , ∀j | uj ∈ Ut, accumulates the contributions

of the not-relevant dimensions.

Now, it is possible to compute the highest value among the
three that is,Mt,k = max{Dt,k, Rt,k, Nt,k}, and to estimate
the characterization,bt,k, of thek-th server resource measure
on the basis of its main behavioral value:

bt,k =

8

<

:

Deterministic if Mt,k = Dt,k

Random if Mt,k = Rt,k

Negligible if Mt,k = Nt,k

(3)

The characterization of each server is recorded in the
Bt vector and represents the term of comparison for the
detection of a behavioral change in the characterization
at two consecutive time intervals. Whenbt,k 6= bt+1,k, a
behavioral change affecting thek-th monitored server is
detected.

IV. RESULTS

In this section, we present the experimental results of
the proposed approach on data traces collected from an
enterprise data center consisting of 514 servers and sup-
porting different types of applications, including Web sites,
databases, access controls, CMS, mail server, management
software. In this testbed, system monitors collect resource
measures every minute referring to CPU utilization, primary
and secondary memory-related metrics, network activities.
Our system is organized hierarchically, as suggested in [15],
with subsystems of almost half a hundred servers in order to
support an efficient orchestration of real-time management
mechanisms. For the sake of presentation, we consider two



data sets,Xt andXt+1, referring to the CPU utilization of a
subsystem of 50 servers hosting e-Commerce websites with
dynamic and interactive content over two consecutive days,
November 8 and 9, 2010, respectively.Xt and Xt+1 are
matrices withn = 1440 rows andp = 50 columns. Sec-
tion IV-A presents the results of the server characterization
and of the behavioral change detection. In Section IV-B, we
analyze the computational complexity of the methodology
by considering several sizes of the data set.

A. Server characterization and behavioral changes

We initially consider the matrixXt and evaluate the
energy σi carried on by each dimensionui in order to
identify how many dimensions actually bring information
to this data set. Considering the 90-percentile of the energy
of the overall system, we estimate that it is captured just
by the first nine dimensions as shown in Table I. These
dimensions contribute to most of server variability. Our
approach evaluates the first 9 dimensions asrelevant, while
the other 41 dimensions are marked asnot-relevant from the
point of view of the energy. This is an important result of the
proposed methodology applied to a real data center because
it confirms that, in terms of energy, the resource measures
all together form a structure with an intrinsic dimensionality
of r = 9 that is much lower than the original number (50) of
the considered set of time series. The application of the ACF
to ther = 9 relevant dimensions gives that 5 dimensions are
correlated and 4 arelow-correlated (Table I).

Order Behavioral class Energy
1 Correlated 51.03%
2 Correlated 11.99%
3 Correlated 8.64%
4 Low-correlated 4.8%
5 Low-correlated 3.27%
6 Correlated 3.14%
7 Correlated 3%
8 Low-correlated 2.87%
9 Low-correlated 2.42%

Table I
CLASSIFICATION OF RELEVANT DIMENSIONS.

The goal is now to determine which dimensions actually
bring information to which CPU traces of the data set. In
the left half of Table II, we report the results of the server
characterization on the data setXt. The columnsDt, Rt

and Nt denote the three categories of our methodology at
time intervalt. Since it is important to validate the proposed
approach, we compare its results against those obtained by
applying to each data stream the traditional mechanisms
(that we name Baseline characterization) requiring sta-
tistical methods for the analysis of server behavior, in-
cluding the correlation among values [12] and probability
distributions [16], and mean load analysis [17]. Due to
the high variability of system resource measures, all these
analyses must provide a pre-filtering step to remove noise

from data [18]. The classification results achieved by the
Baseline characterization are reported in the second column.
In the same table, we report the results obtained through
the proposed approach in the threeMethodology columns.
These columns highlight in bold text theMt value for each
server. This value denotes the behavioral characterization
that is assigned by the proposed methodology. For example,
baseline analyses at time intervalt of server 3 compute a
mean load utilization of 6.39% that sets it as a negligible
server. Our methodology reaches the same characterization
through the computation of only three behavioral values: a
predominantNt,3 value of 0.1866 characterizes the server as
under-loaded, avoiding the analysis of the entire data stream.
If we compare the classes with bold indexes to the server
characterization arising from the Baseline characterization
reported in the second column, we see a perfect correspon-
dence of results. Indeed, our methodology is able to identify
the main statistical behavior of 50 servers through a classi-
fication and a statistical analysis of only the most relevant9
dimensions of the data set. By working on dimensions that
capture the common patterns of data variation and isolate
random perturbations, our methodology avoids to apply any
filtering techniques on the small set of dimensions.

We apply the proposed methodology on the second data
setXt+1 in order to obtain the system view of the next day.
During the night, a new business application connected to a
database was installed and caused a relevant change in server
activities. The results are shown in the right half of Table II.
By comparing the characterization results ofXt andXt+1,
we are able to evidence the behavioral changes of servers.
In particular, the new application modifies the activity of
servers11, 15 and 17 from deterministic to random, as
denoted by their prevailingDt and Rt+1 values. In such
a way, we are able to evaluate the behavioral implications
of the new application in the activity of servers due to the
effect of non-determinism incurred by the new requests. A
more detailed analysis is reported in Figure 5. Figure 5(a)
shows the CPU utilization trace of the server 11 before the
introduction of the new application. An evident deterministic
behavior follows the diurnal activity of users. With the
insertion of the new application, server 11 changes its
behavior showing random dips and bursts of CPU utilization
as in Figure 5(b).
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Figure 5. Behavioral change of server 11.



Xt Xt+1

Baseline Methodology Baseline Methodology
characterization characterization

CPU Behavior Dt Rt Nt Behavior Dt+1 Rt+1 Nt+1

1 Random 0.2211 0.2379 0.0181 Random 0.1155 0.2592 0.0481
2 Negligible 0.0006 0.0009 0.1297 Negligible 0.0008 0.0012 0.1373
3 Negligible 0.0443 0.0334 0.1866 Negligible 0.0537 0.0454 0.1936
4 Random 0.0391 0.3012 0.1185 Random 0.0409 0.3120 0.1115
5 Negligible 0.0186 0.0116 0.1955 Negligible 0.0190 0.0163 0.2051
6 Negligible 0.0162 0.0128 0.1938 Negligible 0.0183 0.0141 0.2182
7 Random 0.0615 0.2379 0.0181 Random 0.0753 0.2622 0.0201
8 Negligible 0.0492 0.0370 0.2030 Negligible 0.0505 0.0401 0.2112
9 Random 0.1160 0.2206 0.1236 Random 0.1724 0.2310 0.1311
10 Negligible 0.0005 0.0005 0.1309 Negligible 0.0008 0.0018 0.1413
11 Deterministic 0.3539 0.1612 0.0540 Random 0.2073 0.2648 0.0208
12 Negligible 0.0099 0.0049 0.1960 Negligible 0.0133 0.0054 0.2006
13 Negligible 0.0139 0.0122 0.2052 Negligible 0.0105 0.0166 0.2922
14 Deterministic 0.3158 0.2091 0.0150 Deterministic 0.3801 0.1696 0.0117
15 Deterministic 0.2302 0.0792 0.0860 Random 0.0434 0.2309 0.0345
16 Deterministic 0.3057 0.2396 0.0176 Deterministic 0.3113 0.2601 0.0158
17 Deterministic 0.3368 0.1016 0.0402 Random 0.1556 0.2635 0.0198
18 Random 0.0357 0.3350 0.0712 Random 0.0370 0.3048 0.0525
19 Random 0.0685 0.2085 0.0071 Random 0.0484 0.2391 0.0111
20 Deterministic 0.2755 0.1612 0.0251 Deterministic 0.2444 0.1220 0.0288
21 Random 0.1170 0.2858 0.0239 Random 0.1333 0.2510 0.0244
22 Random 0.0837 0.3412 0.0213 Random 0.0745 0.3287 0.0255
23 Deterministic 0.3955 0.0846 0.0927 Deterministic 0.3446 0.0821 0.1018
24 Deterministic 0.3163 0.3154 0.0374 Deterministic 0.3131 0.3987 0.0345
25 Negligible 0.0002 0.0006 0.1037 Negligible 0.0012 0.0005 0.1198
26 Negligible 0.0569 0.0402 0.1912 Negligible 0.0722 0.0550 0.1624
27 Negligible 0.0071 0.0186 0.2028 Negligible 0.0113 0.0225 0.2888
28 Negligible 0.0220 0.0268 0.2112 Negligible 0.0245 0.0211 0.2009
29 Random 0.0432 0.1261 0.1127 Random 0.0669 0.1174 0.0990
30 Random 0.0207 0.2498 0.0137 Random 0.0193 0.2330 0.0115
31 Deterministic 0.3955 0.0846 0.0927 Deterministic 0.3566 0.0866 0.1217
32 Deterministic 0.4183 0.2324 0.0277 Deterministic 0.4033 0.2431 0.0071
33 Deterministic 0.3037 0.2695 0.0293 Deterministic 0.3169 0.2244 0.0331
34 Random 0.2114 0.2388 0.0166 Random 0.2070 0.2388 0.0166
35 Negligible 0.0478 0.0410 0.1858 Negligible 0.0552 0.0670 0.2004
36 Negligible 0.0387 0.0353 0.2114 Negligible 0.0307 0.0564 0.2145
37 Random 0.0275 0.3535 0.0616 Random 0.0222 0.3114 0.0601
38 Negligible 0.0236 0.0842 0.1214 Negligible 0.0215 0.0667 0.1552
39 Random 0.0611 0.2059 0.0287 Random 0.0021 0.2003 0.0224
40 Deterministic 0.3810 0.2160 0.0421 Deterministic 0.3911 0.2022 0.0126
41 Deterministic 0.2462 0.0784 0.0815 Deterministic 0.2132 0.0663 0.0115
42 Deterministic 0.3902 0.0892 0.0960 Deterministic 0.3888 0.0531 0.0770
43 Negligible 0.0003 0.0008 0.1094 Negligible 0.0005 0.0011 0.1677
44 Negligible 0.0039 0.0100 0.1755 Negligible 0.0023 0.0332 0.1810
45 Deterministic 0.3879 0.1695 0.0458 Deterministic 0.3552 0.1565 0.0221
46 Deterministic 0.3002 0.0716 0.0866 Deterministic 0.3441 0.0651 0.0733
47 Negligible 0.0090 0.0198 0.1659 Negligible 0.0110 0.0153 0.1977
48 Negligible 0.0221 0.0237 0.2081 Negligible 0.0319 0.0451 0.2231
49 Negligible 0.0006 0.0003 0.1388 Negligible 0.0007 0.0004 0.1874
50 Deterministic 0.2032 0.0898 0.0844 Deterministic 0.2243 0.0711 0.0491

Table II
SERVER CHARACTERIZATION AND BEHAVIORAL CHANGES.

Changes in server behaviors guide system operators to
adapt the system to changing environments. Besides that,
the identification of changes in the behavior of some servers
does not imply a change in overall system functioning: the
transition of a handful of servers from the deterministic to

the random class does not mean a necessary change in the
overall system operations.

B. Computational complexity of the methodology

In this section, we evaluate the computational complexity
of the proposed methodology in order to assess its feasibility



Methodology Baseline characterization

Major processing steps Computational Major processing steps Computational
involved complexity involved complexity

PCA analysis of a nxp matrix O(p3 + n ∗ p2) Filtering of p streams of length n O(p ∗ nlog(n))

Behavioral analysis of r streams O(r ∗ n2) Behavioral analysis of p streams O(p ∗ n2)

Total O(p3 + n ∗ p2 + r ∗ n2) Total O(p ∗ n2)

Table III
COMPUTATIONAL COMPLEXITY OF THE APPROACHES.

to data center dimensionality. We compare the number of
computations required by our proposal for characterizing
server behavior to that needed by traditional approaches
working on the all set of monitored data. The two computa-
tional complexities are reported in Table III (we remindn as
the number of samples,p the number of considered resource
measures andr the number of relevant dimensions.)

The PCA requires aroundO(p3+n∗p2) computations [19]
for the eigenvalue decomposition of a covariance matrix,
while the analysis of the statistical attributes of a streammay
provide a number of operations spanning from logarithmic
to exponential in the number of samples. In this evaluation,
we consider the application of behavioral analyses having
at most a quadratic computational cost. Hence, the total
computational complexity of the proposed methodology is
O(p3 + n ∗ p2 + r ∗ n2). On the other side, the baseline
characterization needs a pre-filtering step on all monitored
data before applying behavioral analyses. Also for filtering
techniques, there are a lot of models with different properties
and complexities. In order to provide reliable characteriza-
tions, we decide to apply Fast Fourier Transform [18] for
filtering data by makingO(p∗nlog(n)) computations. Then,
quadratic (or less) behavioral analyses are applied to all
filtered data. Hence, the total computational complexity of
the baseline approach isO(p∗nlog(n) + p∗n2) ≈ O(p∗n2).

In Figure 6 we show the tendencies of the two computa-
tional complexities, when the two approaches characterize
different number of streams of fixed lengthn = 1440.
By varying the dimensionalityp of the data set up to one
thousand resource measures, the computational complexity
of the proposed methodology (line with filled circles in
the figure) maintains always lower than that of the base-
line characterization (line with squares). The dimensionality
reduction lowers the number of data streams to analyze,
thus lightening the expense of server characterization. We
expect that, for higherp values, there is a size of the data
set after which the baseline characterization is more efficient
than the proposal. However, it is mandatory to consider that,
in large data centers, it is necessary to work hierarchically
on subsets of interacting components, typically comprising

hundreds of servers hosting tens of virtual machines. For
proper system design and management, it is basilar to select
and work on significant parts of the data center, that is on the
whole so huge that all measures are useless. Moreover, the
performance of the proposed methodology can be improved
by the application of less consuming implementations of the
Principal Component Analysis. For example, FastPCA [20]
can lower the dimensionality reduction complexity toO(p2)
and its adoption inside our methodology brings to a compu-
tational complexity that follows the curve with star points
in Figure 6.
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Figure 6. Analysis of the computational complexity.

V. CONCLUSIONS

The large number of servers and resources involved in
modern enterprise data centers and private cloud architec-
tures requires management strategies because no amount
of human administrators would be capable of cloning and
migrating virtual machines in time, as well as re-distributing
or re-mapping the underlying hardware. The huge number
and the heterogeneity of server resource measures prevent
the possibility of detecting changes through the analysis of
all monitored data.



In this paper, we propose a methodology for the detection
of behavioral changes in modern enterprise data centers,
where monitored data streams refer to heterogeneous and
variable system resource measures. By providing a data
dimensionality reduction and a characterization of server
statistical heterogeneity, we are able to detect changes in
server operations without the need of statistically analyzing
the entire set of resource measures. The results achieved
by applying the methodology to a real context validate our
proposal and open interesting perspectives on novel decision
support systems and resource management models.
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