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Abstract—System management algorithms in private and
public cloud infrastructures have to work with literally thou-
sands of data streams generated from resource, application
and event monitors. This cloud context opens two novel issues
that we address in this paper: how to design a software
architecture that is able to gather and analyze all information
within real-time constraints; how it is possible to reduce the
analysis of the huge collected data set to the investigation
of a reduced set of relevant information. The application of
the proposed architecture is based on the most advanced
software components, and is oriented to the classification of the
statistical behavior of servers and to the analysis of significant
state changes. These results guide model-driven management
systems to investigate only relevant servers and to apply
suitable decision models considering the deterministic or non-
deterministic nature of server behaviors.
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I. INTRODUCTION

Data centers for cloud services are characterized by a huge

number of hardware resources (processors, memories, stor-

age elements, virtual machines) and software components

(applications, business processes) that interact in unpre-

dictable ways. System management algorithms supporting

these infrastructures must be able to prevent performance

degradations, unavailability, and energy waste. They should

be able to operate at different time scales (from seconds to

days) and should support prompt reconfigurations motivated

by changes in system, client, and business policies.

The monitors installed in cloud infrastructures produce

thousands and thousands of heterogeneous data streams

at the level of hardware resources, applications, events,

and services [1]. We should also consider that some data

streams may contain missing or faulty measures. Hence, any

management decision needs software and modeling supports

that are able to gather these heterogeneous data streams, to

filter and aggregate multiple flows in order to extract from a

multitude of raw performance measures those really relevant

for a given business or system objective.

In this paper, we propose a novel architecture that supports

models and methodologies for the efficient system man-

agement of large enterprise data centers offering external

services at different levels (infrastructure and platform) as

in a cloud-based infrastructure. The monitoring and analyzer

components for management of cloud-based infrastructures

are influenced by two main factors: scalability for increasing

numbers of hardware and software components; reliability

of the processes supporting collection and analysis oper-

ations. Both issues are addressed through the deployment

of a highly distributed and redundant infrastructure that

integrates several state-of-the-art software frameworks. Our

design addresses the scalability challenge in several ways.

The system is logically divided into several subsystems

according to different spatial and time spans. A significant

subset of the data processed by the monitoring framework

at shorter time spans is made available to the runtime

management modules operating at longer time spans. In this

way, the duplication of preliminary operations is avoided.

Furthermore, the modules operating at longer time scales

identify from the myriad of available measures those that

are really critical for the system. We show that the proposed

approach is able to operate at different time scales and at

different space scales (from single resources to servers to

the entire cluster). It is able to reduce the dimension of

the problem by discarding data streams that are negligible

in terms of system management, and to classify the most

relevant data streams in two classes: deterministic and non-

deterministic. This classification allows a model-driven man-

agement system to apply the right model to the relevant data

set and to receive just the signals about the most significant

changes in the stochastic evolution of the server behaviors.

It is important to observe that in this paper we consider one

data center of a cloud infrastructure and we leave to future

work the extension to geographically dispersed data clusters.

The paper is organized as follows. Section II introduces

the on-line distributed analysis framework and its main com-

ponents. Section III provides an analysis of different linear

and non linear models to resources operating at medium-

term time scales. Section IV discusses related work in the

area of large-scale system monitoring. Section V concludes

the paper with some final remarks.



II. A HIGHLY DISTRIBUTED ARCHITECTURE FOR

SUPPORTING SYSTEM MANAGEMENT

High level architecture. High scalability and availability

are the main goals driving the design of the proposed

architecture for system monitoring and analysis that must

support system management decisions. These goals are

achieved through the deployment of a highly distributed

and redundant infrastructure that is outlined in Figure 1.

Although in many data centers, it is possible to use a single

data source for the entire system, for the sake of scalability

we decide to use several databases from the beginning of

the design architecture. We assume to have one distributed

storage for the collected samples and another distributed

storage for longer term information for each set of resources

that we denote as a cluster. The information stored in these

databases is related to the status of the cluster (underutilized,

healthy, loaded), to resource utilization and availability. The

reason behind this choice is straightforward: we believe that

it is easier to process system-level indications and trends

from several, independent sources rather than from a unified

central database. Decoupling cluster information also helps

in identifying bottlenecks in a faster and clearer way.

Hadoop is chosen as the the development framework for

scalable and reliable data collection and analysis, because

it brings a dramatic scalability improvement with respect

to traditional RDBMS-based data storage architectures [2]

under the following conditions: (a) random data access

patterns (stream processing proves much more efficient than

individual read-write operations); (b) a non negligible frac-

tion of the stored data is processed and stored concurrently

(the Map-Reduce paradigm has been designed with this

purpose in mind); (c) data reads are predominant with

respect to data writes. These conditions are typically met

by a large-scale monitor and analysis process that collects

performance samples continuously and computes periodical

component health status summaries.

At the lowest level, we have sets of hardware and software

resources which can be associated to subnets, racks, distinct

production areas, and logical or physical clusters. On each

monitored node, a collection agent is responsible for ex-

tracting performance and utilization samples at regular time

intervals. These samples are sent to the distributed cluster

data filter, which performs preliminary validity checks on

them and stores them into the distributed sample storage.

From now on, the data is persistently stored and available

as a (key, value) pairs, where key is a unique identifier of

a measure and value is usually a tuple of values describing

it (e.g., timestamp, host name, service/process, performance

index, actual value).

The distributed cluster analyzer periodically extracts all

the (key, value) pairs related to the resources in the cluster.

It then performs more complex actions: identification of the

relevant components in the system through the Principal

Component Analysis technique, trend analysis through lin-

ear and non-linear timeseries aggregation models, anomaly

detection, capacity planning. The goal of these scripts is to

provide a “reduced view” of the entire cluster by discarding

those data streams that are negligible in terms of system

management, and to classify the most relevant data streams

in two classes: deterministic and non-deterministic. This

classification allows a model-driven management system to

apply the right model to the relevant data set and to receive

just the signals about the most significant changes in the

stochastic evolution of the server behavior. The invocation

frequency of the distributed cluster analyzer is higher than

that of collection agent (hours to weeks), and depends

largely on the time-scale of the associated management task.

The (key, value) pairs resulting from the analysis are stored

into the permanent distributed analysis storage.

The role of the distributed system analyzer is similar to

that of the distributed cluster analyzer. It takes the (key,

value) pairs from each cluster’s distributed analysis storage

and produces a global representation of the data center

reduced in terms of data streams.

The collection agent. The collection agent is shown in

Figure 2a. Each monitored resource has associated a probe

process that collects a set of performance indexes, such

as utilization, response time, throughput, at different time

intervals (our considered sampling intervals are the order

of one minute, but different time scales can be considered).

All collected performance samples are stored and processed

efficiently by the Chukwa monitoring subsystem. Chukwa is

a highly scalable data collection and reporting system which

has recently become part of the Hadoop framework. It has

been designed to mine efficiently log data and to discover

trends in large-scale systems. It can also be used to stream

process data produced through live probes. Chukwa dele-

gates the collection process to one single agent process per

host, which collects data from several, specialized adaptor

processes that act as an interface with the monitoring probes

because each probe has its own adaptor. It then emits data

periodically (if necessary, even in the order of seconds). We

implemented several probes for the most popular system

monitoring tools (vmstat, pidstat, sar, XenMon). We also

configured the ExecAdaptor module to execute these probes

at regular intervals of time.

The distributed cluster data filter. The data collected

by the Chukwa agent is sent to the distributed cluster

data filter shown in Figure 2b, where it is received by a

Chukwa collector process. The collector is designed to scale

up to several hundred distinct agents, and it is written to

stable storage. It is important to remark that data is not

written continuously but it is packed in large chunks (called

sink files) and marked for later processing. These types

of operations dramatically improve the throughput of the

storage subsystem. Indeed, the number of write operations

drops from one per adaptor per machine per unit time to
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Figure 2. Detailed design of the components

a handful per cluster. The data chunks can be archived

directly into the Hadoop Distributed File System (HDFS)

without any modification, or pre-processed into sequences

of (key, value) pairs through multiple map-reduce jobs [3].

HDFS is designed to run on commodity hardware, is highly

fault tolerant, provides high throughput access to large data

sets and makes stream batch processing very easy. However,

these positive features come at one cost: low-latency access



to single data structures is more difficult and slower than

in the traditional RDBMS-based schemes. This fact does

not represent a drawback in our architecture, for two main

reasons: (a) we are not interested in very high sampling

frequencies (once every minute is fine); (b) at this level, we

are interested in scalable, batch checking and storing of a

high volume of performance samples. With these premises

in mind, we integrate the Chukwa framework with a set

of custom map-reduce scripts that check the validity of the

performance samples, and flag them appropriately. The goal

behind these scripts is to verify that the probes are col-

lecting meaningful data. Some examples of checks include:

presence/absence of samples, belonging to a specified range,

presence of a series of null samples.

The distributed cluster analyzer. At the heart of the

distributed cluster analyzer shown in Figure 2c there is a set

of analyzer nodes which execute Pig scripts. Pig [4] raises

the level of abstraction for processing large datasets. With

map-reduce, there is a map function and there is a reduce

function, and working out how to fit the data processing

into this pattern, which often requires multiple map-reduce

stages, can be a challenge. With Pig the data structures are

much richer, typically being multivalued and nested; the set

of transformations that can be applied to the data are much

more powerful (for example, they include joins, which are

not easy to implement in bare map-reduce scripts). Each Pig

script is compiled into a series of equivalent map-reduce

scripts that process the input data and write the results in

a parallel way. We let Pig operate in “Hadoop mode” by

fetching data directly from the files in the distributed cluster

data filter, through the LOAD statement. Each map script

selects a subset of the data produced by Chukwa and feeds

it to the map-reduce subsystem. Here, values are grouped by

key, sorted by key and sent to the reduce scripts, that produce

the desired output. We implemented scripts to aggregate

data both temporally and spatially. Further analyses include

anomaly detections, trend analyses and supports for capacity

planning on a longer time scale.

The distributed analysis storage. The output of these

map-reduce scripts is written to a HBase cluster. Apache

HBase is a distributed column-oriented database built on

top of HDFS. HBase is the Hadoop application to use when

an application requires real-time read/write random-access

to very large datasets. HBase is built from the ground-up

to scale linearly just by adding nodes; it is not relational

and does not support SQL, but thanks to the proper space

management properties, it is able to surpass a traditional

RDBMS-based system by hosting very large and sparsely

populated tables on clusters implemented on commodity

hardware. In our architecture, HBase fits perfectly the role

of an intermediary storage between the local analyzer that

produces information periodically, and the distributed system

analyzer that consumes the produced information.

The distributed system analyzer. The distributed system

analyzer fetches data from several distributed analysis stor-

age clusters and processes in a parallel way the health status

of each cluster in order to produce a few figures of merit that

show the health status of the entire system. The architecture

of the distributed system analyzes is almost identical to that

of any distributed cluster analyzer. It differs only in the

Pig scripts, which elaborate more sophisticated, system-wide

models aimed at identifying the most relevant resources.

Example scripts implemented at this level include, among

the others, longer term predictions, Principal Component

Analysis, capacity planning.

III. STATISTICAL ANALYSIS

In this section, we present the results of preliminary

monitoring on a data center of 50 nodes. We show that

in the considered real data center characterized by a high

number of heterogeneous hardware and software compo-

nents (processors, memories, storage elements, applications)

the proposed approach is able to operate at different time

scales, to reduce the system dimensionality by discarding

low impact data streams and passing to a model-driven

management system only relevant data streams, to classify

the main time series with the final goal of applying the

right models for supporting the decision, to signal significant

changes in the evolution of the resources and overall system.

The first important goal is to evaluate the impact of each

data stream on the overall system activity so to distinguish

important and negligible sources of information. Eliminating

negligible data sets diminishes the complexity of managing

the system and provides a robust solution able to work

at the different management time spans (short, medium,

long term). The proposed methodology is based on the

Principal Component Analysis that allows us to reduce the

dimensionality of the problem. Figure 3 shows an example

of a dimension of our data set and its corresponding principal

component. The dimension in Figure 3(a) captures a pattern

of the temporal variation common to the set of data streams

referring to CPU utilizations of different servers. The extent

to which this temporal pattern is present in each CPU

utilization of the monitored servers is represented by the

entries shown in Figure 3(b); we infer from the strongest

peak that the dimension is most present in the server 44.

The classification of data streams on the basis of their

deterministic or non-deterministic behavior is based on the

evaluation of the autocorrelation function of each relevant

dimension [5]. If a data stream contains trends and seasonal

patterns, then the correlogram exhibits high values and an

oscillation at the same frequency. Knowing the nature of the

data streams guides the choice of suitable management al-

gorithms and prevents the analysis of those components that

cannot be modeled or do not provide relevant information

to the overall system state.

Let us outline some statistical characteristics to motivate

why only deterministic data streams can be used for data
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Figure 4. Examples of deterministic data streams.

center management decisions at any time scale and the need

of multiple filtering techniques to extrapolate meaningful

information from non-deterministic data streams. Most de-

terministic patterns in data stream analysis can be described

in terms of trend and seasonality. The trend represents a

general systematic linear or (most often) non-linear compo-

nent that changes over time and does not repeat or at least

does not repeat within the time range captured by the data.

When data streams are monitored for a sufficiently long time

period, it is often the case that these series display seasonal

patterns. A seasonal pattern has similar nature as a trend

component, but it repeats itself in systematic intervals over

time. This is typically the case of Internet-based services,

where system measures increase during diurnal activities and

decrease during the night or weekend. In Figure 4 (a) we give

an example of an upward linear trend data stream. Figure 4

(b) shows a typical example of a time series displaying

seasonality. Both trend and seasonal components can be

predicted through parametric techniques that learn a model

from the past and reproduce it in the future for management

purposes.

On the other hand, non-deterministic data streams have

stochastic behavior and therefore we do not deal with

only one possible reality of how the data stream might

evolve under time. In a stochastic data stream there is

some indeterminacy in its future evolution is described by

probability distributions. All non-deterministic data streams

are mainly driven by stochastic errors, that are deviations

of the data stream from the expected systematic pattern.

Random errors of data sets coming from process moni-

toring typically include a noteworthy spike component. It

collects short-lived bursts departing from data stream mean

in correspondence of unexpected and uncommon events in

the sampled resource measure. Also stochastic noises are

deviations of the data stream from the expected deterministic

pattern. In computing and information contexts, noise is

typically considered unwanted data without meaning, that

is, data that is not used to transmit a signal, but it is simply

produced as an unwanted by-product of other activities.

IV. RELATED WORK

Monitoring systems. Existing monitoring systems can be

divided into two distinct categories: log collection frame-



works and lossy, low data-rate real-time systems for machine

telemetry. Probably the oldest log collection framework

is syslog [6], which supports streaming logs across the

network. However, syslog has serious defects: no clear

solution to the discovery, load balancing, or failure handing

problems. The rise of datacenter-scale distributed systems

has made these problems particularly glaring, and in recent

years several newer systems have been developed. Scribe [7]

apparently solves some of these problems, but unfortunately,

no details about its architecture seem to have been published

to date. Two popular network monitoring systems are as

Nagios [8] and Ganglia [9]. They are capable of collecting

and storing substantial volumes of metrics data. While

Nagios has a centralized architecture, Ganglia is hierarchical

and distributed, thus making it a good candidate for our

collection subsystem. Unfortunately, Ganglia is oriented to

numeric time-series data, and provides little to no support

to log mining. Chukwa has one limitation: it cannot easily

instrumented to do sophisticated processing on the collected

data, due to lack of rich data structures that are available in

the Pig Latin language. Our approach, which to the best of

our knowledge is one of the first in its field, tries to solve this

limitation with a hierarchical architecture, which simplifies

the extraction of system-level indications and trends from

several, independent sources.

Identification of relevant data streams. In a complex

system made up of several thousands of hardware and

software components, even identifying the failing nodes may

become a computationally intensive task. Thus, a scalable

monitoring framework needs to reduce the number of rele-

vant system state information made available to the orches-

tration module. This goal can be achieved by distinguishing

the components that are critical for the performance of the

entire systems from those that are not. Techniques such

as the multi-variate analysis and the Principal Component

Analysis are effective in capturing the salient features of

a subsystem’s internal state, thus drastically cutting the

amount of data used to perform decisions. Spatial aggre-

gation of different resources in an the context of an on-

line management system for distributed systems is still an

open research problem, due to the the high number of time

series available and to the heterogeneity of business-level

and system-level measures. To the best of our knowledge,

this paper is one of the first attempts at reducing the system

state information through these techniques.

V. CONCLUSIONS

The cloud computing paradigm allows us to keep up with

requirements behind complex applications, massive data

growth, sophisticated business models, but it requires novel

approaches to support model-driven resource management

systems. In this paper, we have proposed a scalable and

reliable architecture that is based on highly distributed

technologies operating at computational and data access

level. These choices are mandatory when you have to

support gathering and analysis operations of huge numbers

of data streams coming from cloud system monitors. The

proposed architecture is already integrated with on-line

analyzers working at different temporal scales. Preliminary

experiments include the identification of the most relevant

data streams for system management purposes, and the

possibility of distinguishing between deterministic and non-

deterministic data sets. All these operations for hundreds

of data streams are carried out within real-time constraints

in the order of few minutes thus demonstrating that huge

margins of improvement are feasible.
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