
Distributed systems to support efficient adaptation for

ubiquitous Web

Claudia Canali
University of Parma

claudia@weblab.ing.unimo.it

Sara Casolari, Riccardo Lancellotti
University of Modena and Reggio Emilia

{casolari.sara, lancellotti.riccardo}@unimore.it

Abstract

The ubiquitous Web will require many adaptation and personalization services
which will be consumed by an impressive amount of different devices and classes of
users. These novel advanced services will stress the content provider platforms in an
unprecedented way with respect to the content delivery seen in the last decade. Most
services such as multimedia content manipulation (images, audio and video clips) are
computationally expensive and no single server will be able to provide all of them,
hence scalable distributed architectures will be the common basis for the delivery plat-
form. Moreover these platforms would even address novel content management issues
that are related to the replication and to the consistency and privacy requirements of
user/client information. In this paper we propose two scalable distributed architec-
tures that are based on a two-level topology. We investigate the pros and cons of such
architectures from both a security, consistency and performance points of view.

Keywords: Web content adaptation, High performance architectures, Web content delivery,

Ubiquitous Web access, Pervasive computing

1 Introduction

The current trend in the evolution of the Web is towards an ever increasing complexity and

heterogeneity. The growth in Web popularity is related to the diffusion of heterogeneous

client devices, such as handheld computers, mobile phones, and other pervasive computing

devices that enable ubiquitous Web access. Furthermore, the growing complexity of Web

services has increased their heterogeneity. In several cases we observe the introduction of

so-called personalized Web services which aims to match the user preferences. The need

for personalization led to the introduction of content adaptation services that tailor Web

resources to the user preferences and to the capabilities of their clients.

1

Content adaptation is an expensive task from a computational point of view. As a

consequence, much interest is focused towards high performance architectures capable of

providing efficient and scalable adaptation services. We can define three players in the game

of content adaptation: the client which issues requests, the content provider which hosts the

Web resources being requested and the adaptation provider which is the intermediary entity

that carries out the actual content adaptation.

In the intermediary-based scenario considered in this study, the customers of the Web

content adaptation service are the end users. The content adaptation provider is typically

an ISP or some network operator which provides its customer with the service of tailoring

any Web site accessed to their needs and preferences. The adaptation service provider

tailors the content delivery service on the end-user requirements. In such a scenario the

economical revenue for the adaptation provider comes from the end users which are charged

to access adapted and personalized contents. Users enjoy adaptation to their client device(s)

as well as some form of personalization such as the creation of resources by merging multiple

information sources (e.g., RSS feeds). Such services can be provided to both single users as

well as institutions or companies willing to enable ubiquitous Web access for their employees,

with the latter scenario seeming the most interesting from an economical point of view. An

example of such service is the AvantGo company [12] which enables Web access to PDAs by

tailoring the Web page layout and the embedded object size to devices with small displays.

The service provided by AvantGo is mainly related to simple adaptation services, hence

it is far from exploiting the whole potential of the intermediary-based content adaptation.

However, this is a real-world example of such architecture, which demonstrates the feasibility

of such approach also from a revenue point of view.

The idea of having a third-party to carry out content adaptation is not the only feasible

solution. Some client side solution for advertisement removal or to increase user information

privacy are available (e.g. Mozilla Extensions [17], like Bug Me Not [16]), however, such

approach ties the user to a specific client platform, hence it lacks the generality required

for a truly ubiquitous-access enabling technology. An approach that adds all adaptation

services to the content provider platform [15] remains a valid solution when the popularity

of the content provider is medium-low. However, with the number of clients and device

2

profiles continuously increasing (hundreds of different device profiles already exist [22]), an

infrastructure that uses a geographically distributed system of intermediary nodes seems the

most practicable solution among the existing alternatives [3, 13] to improve performance and

scalability. For this reason, in the following of this paper we will focus only on intermediary-

based architectures.

A common trend in the development of distributed Web architectures is towards shifting

on the network edge as much services as possible. Examples of this approach are provided by

the ESI [8] system or by the ACDN architecture [19]. This trend is based on the assumption

that the most significant contribution to the system performance is related to the network

delays. However, for some computationally-intensive adaptation services, this assumption is

no longer true. The trade-off between moving services towards the edge and more central-

ized solutions is one of the main issues to be addressed in the design and development of

intermediary-based distributed infrastructures.

This paper explores the trade-offs related to the placement of adaptation services from

both a performance and a data-consistency oriented points of view. The contribution of this

paper is twofold.

First, we propose two architectures for efficient content adaptation based on a two-level

topology, namely edge-oriented and core-oriented, that differ for the location of adaptation

services close or far from the network edge.

Second, we provide an experimental performance evaluation of the proposed architectures

that outlines which choice can provide better performance and under which circumstances

the performance gain is more evident.

The remainder of this paper is organized as follows. Section 2 describes the idea of a

two-level topology, while Section 3 describes the two architectures that will be studied in

the paper. Section 4 describes the experimental setup used to evaluate the performance of

the proposed architectures. Section 5 provides the results of the performance comparison

of the architectures described in the paper. Section 6 presents some related work. Finally,

Section 7 provides some concluding remarks.

3

Adaptation
provider

Content
provider

Client

Figure 1: Two-level architecture

2 Content adaptation in a two-level topology

In this section we describe a topology for the deployment of distributed infrastructures for

content adaptation, namely two-level topology and we discuss the actual content adaptation

services that can be provided by such infrastructure. A two-level topology is based on a

subdivision of nodes in two levels namely edge and internal, as shown in Figure 1.

The edge level is characterized by a large amount of nodes, each located close to the

network edge. Such nodes are usually placed in the points of presence of ISPs to be as close

as possible to clients, as shown in the figure. The internal level of the content adaptation

architecture is composed by a smaller number of powerful nodes. Such nodes can be placed in

well connected locations, which means in Autonomous Systems with an high peering degree,

to reduce communication costs, especially with respect to the edge nodes. Figure 1 also

shows the origin servers belonging to the content provider which are not part of the content

adaptation infrastructure and host the repository of the Web resources (shown as the white

data storage attached to the origin server nodes).

4

To better understand the available architectural options, we recall that the possible con-

tent adaptation services are extremely heterogeneous and each type of adaptation service

can introduce different bounds on the available options, especially depending on the type of

information required for the content adaptation. We can define three categories of content

adaptation services [7]: transcoding, state-less personalization and state-aware personaliza-

tion. Transcoding is a content adaptation to the client device used to access the Web.

Examples of transcoding are data compression or other Web resource manipulation aiming

to save bandwidth. State-less personalization is a content adaptation aiming to adapt Web

resources to the user preferences. A typical example of state-less personalization is content

translation into different languages or the insertion of random banners. Being state-less, this

service does not rely on user profile stored in the content adaptation infrastructure. Both

transcoding and state-less personalization require no special handling of (possibly) sensitive

information because every information needed for the adaptation is contained in the user

request (for example, information on the client device, and on the preferred language(s)

can be extracted from the HTTP headers of each request). As a consequence, transcoding

and state-less personalization do not place any constraint on the architecture. On the other

hand, when content adaptation is carried out on the base of a stored user profile, as in the

case of state-aware personalization, we must handle personal information possibly containing

sensitive information. For example in the case of sophisticated ubiquitous location aware

services, the position of the user introduces both privacy and consistency issues because this

information is sensitive and highly dynamic in nature.

In our intermediary-based content-adaptation scenario there is no preferential access from

the adaptation provider to the origin Web servers. As a consequence the adaptation provider

has no way to know the semantic of the Web applications if we exclude what can be inferred

by analyzing the user interactions. The lack of this knowledge hinders the development

of sophisticated adaptation services which could take advantage from the knowledge about

the Web page content. A typical example is provided by the insertion of context-sensitive

advertisement banners: if the personalization system has no idea about the page being sent

to the user, the banners can be only related to a previously stored user interests list, but

cannot be tailored on the user context. Furthermore, user preferences cannot be easily

5

extracted from the user behavior, and cannot be automatically tuned without recurring to

computational expensive data mining to be carried out off-line. Nevertheless, the deployment

of interesting adaptation services is still possible. State-less personalization and transcoding

tasks can be easily carried out. In a similar way, state-aware personalization tasks which

are not context sensitive can be easily provided. An example would be the so-called social-

navigation where multiple users can share a single annotated bookmark.

A separate note should be devoted to the impact of caching in an Web content adaptation

system. While Web caching has proven to be useful in the case of traditional applications,

caching of personalized resources obtained by means of dynamic content generation is usually

scarcely effective because the intersection between user preferences is small. In this case

caching on the client device is usually more effective than caching on intermediary nodes.

For this reason we can conclude that, although useful, caching is not the most critical task in

the context of advanced content adaptation services because the personalization of resources

hinders the effectiveness of most caching algorithms. Hence, in the following of this paper

we will not delve into the details related to the impact of caching on the proposed solutions.

3 Architectures for content adaptation

The two-level topology allows the deployment of different architectures depending on the

mapping between the personalization service and the level of the topological structure. In

particular in this section we define and describe two different architectures, namely edge-

oriented and core-oriented that allow an evaluation of the performance differences obtained

by moving content adaptation services close or far from the edge of the network.

3.1 Edge-oriented architecture

The edge-oriented architecture tries to carry out content adaptation on the edge nodes

whenever this is possible, also in the case of state-aware personalization, when no sensitive

information is required. To this aim the portion of the user profile not containing critical

information is moved to the edge nodes, while the internal nodes are only used for the most

critical personalization involving sensitive user data and as a backup repository for user

6

1

Edge
nodes

1

Origin
servers

Internal
nodes

Clients

2

3

Figure 2: Edge-oriented architecture

profiles.

The choice of placing most of the adaptation services on the edge nodes rises multiple

issues that must be taken into account in the design and deployment of the architecture.

First, since the number of edge nodes is high, such nodes must be as simple as possible

to reduce management issues. Furthermore, special care should be devoted to consistency

in the information stored on the edge nodes, which means that data replication should be

avoided whenever possible [11]. Finally, we must face an issue related to security. Since

edge nodes are not under the strict control of the adaptation provider, sensitive information

related to the user profile should not be stored in this level of the adaptation infrastructure.

Due to the limited replication of the internal nodes, we can guarantee higher security

standards for them. Hence, these nodes are more suitable for adaptation tasks requiring

sensitive information stored in the user profile.

Figure 2 shows the edge-oriented architecture we observe a significant amount of dis-

tributed edge nodes and few internal nodes as in the typical two-level topology. When a

client request is received by an edge node (Step 1 in Figure 2), the edge node accept the

7

request and carries out the necessary steps for its service. In particular the edge node re-

trieves the Web resource(s) from the origin Web server (step 2), and carries out the content

adaptation locally (Step 3).

In the case where critical user profile information is required for the content adaptation,

the internal nodes are responsible for this task. In this latter case the behavior of the edge-

oriented architecture is similar to the core-oriented architecture described in the following

of this section. However, in our architectural comparison we prefer to take into account

the most common case, hence we omit to describe in detail the case where state-aware

personalization involving critical information is to be carried out.

3.2 Core-oriented architecture

The opposite approach, namely core-oriented architecture, forces most of adaptation services

to be deployed on internal nodes. In such an architecture the edge nodes are extremely

lightweight and are only responsible for forwarding client requests to the appropriate internal

node.

Since most operations in the core-oriented architecture are carried out by the internal

nodes, computational power may seem an issue. However, sophisticated local replication

strategies can provide the amount of computation power required. An example of local

replication is clustering [4] in which a Web switch is placed in front of the system to trans-

parently distribute requests evenly among the nodes of the cluster. With such an approach

the only interface to the system is the switch, which means that computational power can

be seamlessly improved by adding nodes to the cluster. This complex local architecture

does not introduce management problems thanks to the reduced degree of replication of the

internal nodes that avoids the constraints related to the high number of edge nodes.

The core-oriented architecture is also more suitable when it is critical to guarantee ade-

quate data consistency. The most common approach in this case is to reduce data replication.

Literature shows that data consistency can hardly be provided over more than 10 nodes and

the bound of synchronous updates is to be relaxed if more replication is needed [11]. The

core-oriented architecture can reduce data replication based on hashing mechanisms that

8

1

Edge
nodes

1

Origin
servers

Internal
nodes

Clients

2

4

3

Figure 3: Core-oriented architecture

partition the space of user profiles. The user profile is replicated only on one internal node

(or few nodes, depending on the hash algorithm used and on whether backups are kept) to

avoid replica consistency issues.

Figure 3 shows the core-oriented architecture. When a client request is received by an

edge node (Step 1 in Figure 3), the edge node decides (based on hashing algorithms applied

to the information contained in the user request) to which internal node the request is to

be forwarded (Step 2) for processing (Step 4). Since we assume that no caching is adopted,

a fetch operation from the origin server (Step 3) has to be carried out prior of the content

adaptation.

4 Workload model

We now introduce the experimental testbed and the setup used in our performance evalu-

ation. In Section 3 we pointed out that content adaptation involves a plethora of possible

services that can be deployed through a distributed architecture. In this performance evalu-

ation we will consider three different content adaptation services based on a fixed stored user

9

profile. Hence, these services are of state-aware type, even if they do not involve complex

personalization tasks. On the other hand, they are particularly challenging from a perfor-

mance point of view since they require computationally expensive adaptations. We define

three workloads, each used to exercise a different service.

The first workload, namely banners, aims to exercise an adaptation service that reduces

bandwidth consumptions related to advertisement banners. This workload is based on a real-

world trace obtained from the IRCache cooperative Web caching infrastructure. The trace

is rich of small images (mostly codified according to the GIF format) representing banner

files. Such images are processed through aggressive compression and transcoding algorithms

to reduce image size and color depth to save bandwidth.

The second workload, namely photo album, aims to test a content adaptation system that

enables ubiquitous access to a Web album application. In this case the traces used in the

experiments contains several photos in the form of large, high-resolution JPG files. To enable

ubiquitous access we must reduce bandwidth consumptions. However, data compression

must not be as aggressive as in the case of the banner adaptation. Indeed, photographic

images must conserve enough quality to be enjoyable, while with banner files we want to

preserve just minimal information (e.g. the name of the sponsored product). Photographic

images must be processed by reducing image size to adapt the photo to the small displays

typical of mobile clients. Furthermore, to reduce download time, we can reduce the JPEG

quality factor.

The third workload is more focused towards multimedia resources. In this case content

adaptation aims to enable ubiquitous access to audio clips stored as MP3 files. Content

adaptation in this case is mostly related to save bandwidth by means of recoding the audio

streams at lower bit rates. The core of such adaptation (the MP3 recoding algorithm) is

an example that suits other more complex systems, as in the case of the text-to-speech

application proposed in [1].

For the performance evaluation of the proposed architectures, we set up a Web delivery

infrastructure with a client node, a two-level content adaptation infrastructure composed

of four edge and four inner nodes and a Web server. Each node is a equipped with a 3.0

GHz AMD Sempron processor, 512 MB of RAM and an EIDE 80GB hard drive. The

10

CPU frequency is the most significant configuration information since content adaptation

is an heavy task for the CPU. For the Web server, we use Plone [18], a popular content

management system based on the Zope middleware system as the repository of original Web

resources.

In our experiments, we also take into account the effect of geographic links. Each node is

connected to the others through a Fast Ethernet LAN, however, we simulate such effects by

means of a WAN emulator based on special packet schedulers that are part of the 2.6 Linux

kernel. We simulate two WAN effects: packet delay and bandwidth limitation. Packet delay

is provided by the netem packet scheduler, while bandwidth limitation is obtained through

the token bucket filter traffic shaper. Delay is modeled through a linear combination of Pareto

and Gaussian distribution, as suggested in [23]. Since we are interested in the performance

differences of the architectural choices, in this study we neglect the delay due to the last

mile (that is, the link between the client and the edge nodes). On this link we disable WAN

effect emulation.

We use the WAN emulation to create two different network scenarios. The first scenario,

namely good connection, represents a best case for the network and is characterized by

network delays of 10 ms and bandwidth of 50 Mbit/s, while for the second scenario, namely

poor connection, we consider high latency (100 ms) and low bandwidth (1 Mbit/s).

5 Performance evaluation

We now present the main results of our experimental performance evaluation of the various

architectures sketched in Sections 3. We are interested in understanding which architectural

choice provides better performance and under which circumstances the difference is more

evident.

We focus our analysis on the different location of the content adaptation functions. From

Section 3 we recall that in the core-oriented architecture most personalization tasks are

carried out on the internal nodes, while edge nodes are less used for content adaptation.

On the other hand the edge-oriented architecture tries to shift as much content adaptation

operations as possible on the edge level.

11

Table 1: Comparison of core-oriented and edge-oriented architectures (Good connection)

Workload 90-percentile of Perf. gain
response time [s] [%]
Edge Core

oriented oriented
Banners 0.29 0.34 12%

Photo album 0.60 0.64 6.3%
Multimedia 9.12 9.29 1.8%

Table 2: Comparison of core-oriented and edge-oriented architectures (Poor connection)

Workload 90-percentile of Perf. gain
response time [s] [%]
Edge Core

oriented oriented
Banners 0.46 0.80 42%

Photo album 1.47 2.17 32%
Multimedia 17.05 19.15 10%

We configured our experimental testbed to provide content adaptation on the edge and

on the internal nodes according to the two architectures and we measured the response time

in the two cases.

The results are outlined in Tables 1 and 2 for the good and poor network scenarios,

respectively. Columns 2 and 3 of Table 1 show the 90-percentile of response time for the

two architectures as a function of the workload. In particular column 2 is referred to the

edge-oriented architecture, while column 3 refers to the core-oriented architecture. We also

report the performance gain provided by the edge-oriented architecture over the core-oriented

option. Table 2 has a similar structure, with column 2 and 3 reporting the 90-percentile of the

response time of the edge-oriented and core-oriented architectures, respectively, and column

4 showing the performance gain.

If we compare the two tables, we have a confirmation of the intuitive effect that good

connectivity reduces the impact of having two hops to serve the resource. Indeed, besides

the absolute values, the performance gain is nearly 8 times higher in the case of poor network

connection.

12

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 1 2 3 4 5 6 7 8 9 10

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Adaptation time [s]

Multimedia
Photo album

Banners

Figure 4: Content adaptation time

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Adaptation time [s]

Multimedia
Photo album

Banners

Figure 5: Content adaptation time (Zoom)

In order to better understand the performance of the proposed architectures, we also

evaluate the breakdown of the user response time into its main components for the three

different workloads. Such times are similar for both architectures. Hence, we report only

one set of results. Figure 4 shows the cumulative distribution of content adaptation time

under the different workloads, while Figure 5 presents a zoom of the curves between 0

and 1 second. We can see from Figure 5 that the 90-percentile of adaptation time for

the banners scenario is 0.13 seconds, while for the photo album workload, that requires

processing of larger files (pictures), the 90-percentile is almost three times higher. Figure

5 clearly shows that adaptation is more expensive in the multimedia workload, with a 90-

percentile that is one order of magnitude higher than that of the other two workloads. Since

multimedia content adaptation is a computationally intensive task (much heavier than the

other considered services), a more sophisticated delivery architecture could rely on streaming

technologies or use chuncked encoding to reduce response latency. However, this evolution

is out of the scope of this paper and is left as an open issue that we plan to address in future

work.

We also measure the contribution the Web server in the global response time. Figure 6

shows the cumulative distribution of the time taken by the server to satisfy client requests

for the three workloads. We see that the banner workload is the less intensive for the Web

server. Indeed page generation is straightforward and requires only the insertion of a random

banner. From the curve in the figure we see that the 90-percentile of the server response

13

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Server response time [s]

Banners
Photo album

Multimedia

Figure 6: Server response time

Table 3: Contributions to response times

Workload 90-percentile of
response time [s]
Content Web

adaptation server
Banners 0.13 0.15

Photo album 0.32 0.23
Multimedia 8.30 0.65

time is 0.15 seconds. The same curve also shows an interesting step close to the median

value. This step is related to the Plone caching function that reduces Web page generation

time in the case of cache hit. The Photo album workload is heavier also for the Web server

because page generation requires the interaction with a database storing the index of the

photo album. In this case the 90-percentile of response time is 0.25 seconds. Finally, the

multimedia workload is the heaviest of all for the Web server. In this case ID3 tags lookup

in the MP3 files leads to a 90-percentile of response time of 0.65 seconds.

The breakdown of the response time allows a more sophisticated performance comparison

of the two architectures. We can infer the impact of the network-related delay from the

difference between the response time in Tables 1 and 2 and the contributions in Table 3

14

It is interesting to note that the additional hop in the core-oriented architecture repre-

sents a performance issue mainly in the case where the adaptation time is low. If we read

the column of the performance gain in Tables 1 and 2 from the top to the bottom, we see

that the performance gain is reduced as the workload computational requirements grow.

When adaptation time is low, the edge-oriented architecture performance clearly outper-

forms the core-oriented solution, as shown for the banner workload. In this case even for

the best scenario (good network connection) the performance of the edge-oriented architec-

ture over the core-oriented architecture gain is higher than 10%. On the other hand, most

computationally-expensive adaptations require a time that far overweight the cost of the ad-

ditional step, as shown for the multimedia workload, where adaptation time is in the order

of seconds. In this latter case both the core-oriented and the edge-oriented architectures are

a viable solution, even in the case of poor network connectivity.

6 Related work

Content adaptation has been an interesting topic in Web-related literature of the last years.

We can ascribe most contribution to two large groups of research topics: proposal of adap-

tation services and proposal of efficient and scalable architectures. Most studies on content

adaptation services propose novel sophisticated adaptation systems. Examples include text-

to-speech conversion [1] directed to single users as well as collaborative Web browsing [2].

Even more interest has been devoted to the proposal of transcoding services aiming to enable

ubiquitous Web access from heterogeneous client devices [6, 3]. However, most of these stud-

ies does not take into account performance issues and the only proposals to improve system

scalability are related to the introduction of caching [21] or locally distributed clusters [9].

Studies proposing scalable content adaptation and delivery systems evaluate distributed

architectures of collaborative intermediary nodes. Different architectures have been evalu-

ated ranging from flat and hierarchical schemes [5]. However, most of these studies only

focus on transcoding services, which do not introduce significant security and consistency

problems. A noteworthy proposal is a peer-to-peer content adaptation system [20] called

Tuxedo which allows ubiquitous Web access providing both personalization and transcoding

15

services. However, the study does not evaluate in deep detail security issues arising from the

distribution of sensitive information among untrustworthy nodes. The importance of pro-

viding security and consistency by controlling information replication has been pointed out

recently in the field of distributed Web systems [10]. Although the study does not focus on

Web content adaptation but is more directed towards generation of dynamic Web content,

this study confirms our concern for security and consistency guarantee which imposes bounds

that must be taken into account in the design of scalable distributed architectures. Other

studies [25, 24] propose algorithms and protocols to ensure Web cache consistency. However,

such solutions, while reducing the cost of cache update, do not address the issues related to

data privacy and cannot be easily adapted to the case of personalized Web content.

7 Conclusions

In this paper we proposed two novel distributed architectures for the deployment of content

adaptation services that enable Ubiquitous Web access.

The two architectures, namely edge-oriented and core-oriented, share the same topological

structure but differ for the location of the adaptation service which is close or far from the

network edge for the edge-oriented and core-oriented architectures, respectively.

For each architecture we discuss the security and consistency issues that must be ad-

dressed to provide sophisticated adaptation services and we show how these issues can be

addressed.

The paper also provides a performance evaluation of the performance trade-offs related

to the location of adaptation services. Our experiments show that the performance gain

derived from locating adaptation functions on the network edge is clearly influenced by

both the network status and the computational cost of the provided adaptation services. In

particular we found that this performance gain is limited (below 10%) for heavy adaptation

functions (as for our multimedia workload) even in the case of poor network connection

among the nodes of the intermediary infrastructure. Furthermore, this performance gain is

almost negligible in the case of good network connections. On the other hand, light content

adaptation services can increase the performance gain of the edge-oriented architecture up

16

to nearly 50% over the core-oriented architecture in the case of poor network connection.

References

[1] M. Barra, R. Grieco, D. Malandrino, A. Negro, and V. Scarano. Texttospeech: a heavy-
weight edge service. In Poster Proc. of 12th WWW Conference, Budapest, HU, 2003.

[2] M. Bonnet. Personalization of Web services: opportunities and changes. Ariadne, (28),
Jun. 2001.

[3] M. Butler, F. Giannetti, R. Gimson, and T. Wiley. Device independence and the Web.
IEEE Internet Computing, 6(5):81–86, Sept./Oct. 2002.

[4] V. Cardellini, E. Casalicchio, M. Colajanni, and P. S. Yu. The state of the art in locally
distributed web-server systems. ACM Comput. Surv., 34(2):263–311, 2002.

[5] V. Cardellini, M. Colajanni, R. Lancellotti, and P. S. Yu. A distributed architecture
of edge proxy servers for cooperative transcoding. In Proc. of 3rd IEEE Workshop on
Internet Applications, June 2003.

[6] C. S. Chandra, S. Ellis and A. Vahdat. Application-level differentiated multimedia Web
services using quality aware transcoding. IEEE J. on Selected Areas in Communication,
18(12):2544–2465, Dec. 2000.

[7] M. Colajanni and R. Lancellotti. System architectures for web content adaptation
services. IEEE Distributed Systems online, 2004.

[8] Edge Side Includes, 2002. http://www.esi.org/.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and P. Gauthier. Cluster-based
scalable network services. In Proc. of 16th ACM SOSP, pages 78–91, Oct. 1997.

[10] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyengar. Application specific data
replication for edge services. In Proc. of 12th WWW Conference, Budapest, HU, 2003.

[11] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The dangers of replication and a
solution. In Proc. of the 1996 ACM SIGMOD International Conference on Management
of Data, Jun. 1996.

[12] ”iAnywhere Inc.”. AvantGo, 2005. http://www.avantgo.com/.

[13] A. Joshi. On proxy agents, mobility, and Web access. Mobile Networks and Applications,
5(4):233–241, 2000.

[14] B. Knutsson, H. Lu, and J. Mogul. Architecture and performance of server-directed
transcoding. ACM Trans. on Internet Technology, 3(4):392–424, Nov. 2003.

17

[15] R. Mohan, J. R. Smith, and C.-S. Li. Adapting multimedia Internet content for universal
access. IEEE Trans. on Multimedia, 1(1):104–114, Mar. 1999.

[16] Mozilla. Bug Me Not, 2005. http://http://www.bugmenot.com//.

[17] Mozilla. Mozilla extensions., 2005. http://extensionroom.mozdev.org/.

[18] Plone. Plone: A user-friendly and powerful open source content management system
document actions., 2005. http://plone.org/.

[19] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing on the edge: A platform for
replicating internet applications. In Proc. of 8th Int’l Workshop on Web Content and
Distribution, Hawthorne, NY, Sept. 2003.

[20] W. Shi, K. Shah, Y. Mao, and V. Chaudhary. Tuxedo: a peer-to-peer caching system.
In Proc. of PDPTA03, Las Vegas, NV, June 2003.

[21] A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy. PTC: Proxies that transcode
and cache in heterogeneous Web client environments. World Wide Web, 7(1):7–28,
Jan./Mar. 2004.

[22] G. Singh. Guest editor’s introduction: Content repurposing. IEEE Multimedia,
11(1):20–21, Mar. 2004.

[23] Stephen Hemminger. Netem home page. http://developer.osdl.org/shemminger/

netem/.

[24] R. Tewari, T. Niranjan, and S. Ramamurthy. WCDP: a protocol for Web cache con-
sistency. In Proc. of 7th Int’l Workshop on Web Content Caching and Distribution
(WCW), Boulder, CO, aug 2002.

[25] J. Yin, L. Alvisi, M. Dahlin, and A. Iyengar. Engineering web cache consistency. ACM
Trans. on Internet Technology, 2(3):224–259, Aug. 2002.

18

