
Architectures for scalable and flexible Web personalization services

Claudia Canali

University of Parma

claudia@weblab.ing.unimo.it

Sara Casolari, Riccardo Lancellotti

University of Modena and Reggio Emilia

sara@weblab.ing.unimo.it, lancellotti.riccardo@unimore.it

Abstract

The complexity of services provided through theWeb is con-
tinuously increasing and issues introduced by both heteroge-
neous client devices and Web content personalization are be-
coming a major challenge for the Web. Tailoring Web and
multimedia resources to meet the user and client requirements
opens two main novel issues in the research area of content de-
livery. The content adaptation operations may be computa-
tionally expensive, requiring high efficiency and scalability in
the Web architectures. Moreover, personalization services in-
troduce security and consistency issues for user profile infor-
mation management. In this paper, we propose a novel dis-
tributed architecture, with four variants, for the efficient de-
livery of personalized service where the nodes are organized
in two levels. We discuss how the architectural choices are af-
fected by security and consistency constraints as well as by the
access to privileged information of the content provider.More-
over we discuss performance trade-offs of the various choices.

Keywords: Web content adaptation, High perfor-
mance architectures, Web content delivery

1. Introduction

The current trend in the evolution of the Web is to-
wards an ever increasing complexity and heterogeneity.
The growth in Web popularity is related to the diffu-
sion of heterogeneous client devices, such as handheld
computers, mobile phones, and other pervasive com-
puting devices. Furthermore, the ever increasing com-
plexity of Web services has led to an heterogeneity of
offered services, which in several cases are tailored on
the user preferences, leading to the deployment of per-
sonalized Web services. The need for personalization
led to the introduction of content adaptation services
that tailor Web resources to the user preferences and
to the capabilities of their clients.

Content adaptation is an expensive task from a com-
putational point of view. As a consequence, much inter-
est is focused towards high performance architectures
capable of providing efficient and scalable adaptation
services. We can define three players in the game of con-

tent adaptation, as shown in Fig. 1: the client which is-
sues requests, the content provider which hosts the Web
resources being requested and the adaptation provider
which is the intermediary entity that carries out the ac-
tual content adaptation.

The idea of having a third-party to carry out content
adaptation is not the only feasible solution. Some client
side solution for advertisement removal or to increase
user information privacy are available (e.g. Mozilla Ex-
tensions, like Bug Me Not). An approach that adds
all adaptation services to the content provider plat-
form [14] remains a valid solution when the popular-
ity of the content provider is medium-low. However,
with the number of clients and device profiles contin-
uously increasing (hundreds of different device profiles
already exist [18]), an infrastructure that uses a ge-
ographically distributed system of intermediary nodes
seems the most practicable solution among the existing
alternatives [3, 12] to improve performance and scala-
bility.

We can define two main degrees of freedom in the
problem of designing such an infrastructure. Each of
them can be identified by a question:

1. which adaptation services are to be offered?

2. which relationship exists between the previously
defined players?

The first question is motivated by the plethora of adap-
tation services that can be deployed: such services can
adapt Web content to both the client device (transcod-

ing) or to the user preferences (personalization). In the
latter case, personalization can be carried out on the
basis of previously stored information (state-aware per-

sonalization) or not (state-less personalization).
As for the second question, we recognize two pos-

sible scenarios depending on whether the adapta-
tion provider has privileged access to the resources
of the content providers (including Web content, re-
lated meta-data, and databases) or not.

Each of the two questions affects the architectural
choices for the design of distributed content adaptation
architectures.

Figure 1. Actors in content adaptation

The contribution of this paper is twofold. First,
we propose a two-level architecture for scalable con-
tent adaptation services. Such architecture covers a
wide spectrum of adaptation services that ranges from
transcoding to sophisticated state-aware personaliza-
tion. Furthermore, we propose four variants of the ba-
sic two-level architecture which exploit the characteris-
tics of the two levels and the different relationship be-
tween adaptation and content provider.

Second, we discuss the performance issues of the pro-
posed architectural choices outlining for each of them
which choice can provide better performance and un-
der which circumstances the performance gain is more
evident.

The remainder of this paper is organized as follows.
Section 2 describes the basic two-level architecture and
introduces two variant architectures to address the is-
sues related to the class of content adaptation to be de-
ployed. Section 3 describes the two variants of the ba-
sic two-level architecture depending on the relationship
between the adaptation and the content providers. Sec-
tion 4 describes the model used to discuss performance
issues of the two-level architectures, while the actual
qualitative evaluation of the performance is provided
in Section 5. Section 6 presents some related work. Fi-
nally Section 7 provides some concluding remarks.

2. Content adaptation in a two-level ar-

chitecture

We now introduce the basic functions of a Web con-
tent adaptation system. The main issue in the design of
a distributed architecture for content adaptation is the
mapping between these functions and the nodes com-
posing the content adaptation infrastructure. Not ev-
ery mapping is possible and the type of adaptation has
a significant impact on the architectural choices, as we
will discuss in the following of this section.

We can distinguish between actual adaptation tasks
and support functions. For content adaptation we can
refer to three main classes of services, namely transcod-

ing, state-less personalization, and state-aware person-

alization. Transcoding is the services of tailoring Web
content to the capabilities of the client device and the
network connection. For example, we can reduce the
quality factor of an image with the goal of reducing

the size of the file to be delivered. The same goal can
be achieved by means of compression techniques. An-
other significant example is scaling down of graphic
Web resources to fit small displays.

State-less personalization basically refers to the
adaptation services that extract user preferences from
the client request without combining them with pre-
viously stored information. Some examples of these
personalization services include: advertisement re-
moval, virus scanning, and insertion of random ban-
ners.

State-aware personalization refers to the personal-
ization services that are based on some stored informa-
tion. This information is typically contained in some
database(s) and can be extracted as a consequence of
explicit information coming from the user request or in-
ferred through the run-time or off-line analysis of the
user behavior (e.g., through data mining on log files of
a Web site). Hence, the user profile typically consists of
the parameters for the personalization services as well
as additional information such as the recent user his-
tory that can be analyzed to auto-adapt the service
to the user behavior. The use of stored information al-
lows the infrastructure to integrate the above state-less
operations with richer services. A non exhaustive list
of such services includes personalization based on pre-
viously registered user profile, adaptation to the user
navigation style, adaptation to the user interests, con-
tent filtering (for kids), location and surrounding-based
services that achieve personalization on the basis of the
user geographic location and services involving crypto-
graphic digital right management.

Support functions are mainly related to the man-
agement of client requests and additional data. This
consists in request parsing and extraction of useful in-
formation (e.g., user identity, preferred languages, and
browser characteristics) and in forwarding the requests
to the content adapter which can be either on a lo-
cal or remote node. The support function also com-
prises the storage and management of additional infor-
mation. For example the system may need to handle
user profiles describing personalization preferences for
each user. Another significant example is related to the
caching of Web resources, fragments and meta-data as-
sociated with them. However, caching is not a critical
task in this context because the personalization of re-
sources hinders the effectiveness of most caching algo-
rithms.

We propose an architecture which is based on a sub-
division of nodes in two levels namely edge and inter-

nal, as shown in Fig. 2.

The edge level is characterized by a large amount
of nodes, each located close to the network edge. Such

Figure 2. Two-level architecture

nodes are usually placed in the points of presence of
ISPs to be as close as possible to clients, as shown in
the figure. The internal level of the content adapta-
tion architecture is composed by a smaller number of
powerful nodes. Such nodes can be placed in well con-

nected locations, which means in Autonomous Systems
with an high peering degree, to reduce communication
costs, especially with respect to the edge nodes. Fig. 2
also shows the origin servers belonging to the content
provider which are not part of the content adaptation
infrastructure and host the repository of the Web re-
sources (shown as the white data storage attached to
the origin server nodes).

The characteristics of the edge nodes bring issues
and limitation for the deployment of adaptation ser-
vices. First, since the number of edge nodes is high,
such nodes must be as simple as possible to reduce
management issues. Furthermore, special care should
be devoted to consistency in the information stored
on the edge nodes, which means that data replication
should be avoided whenever possible [11]. The second
issue is related to security. Since edge nodes are not un-
der the strict control of the adaptation provider, sensi-
tive information related to the user profile should not
be stored in this level of the adaptation infrastructure.

Due to the limited replication of the internal nodes,
we can guarantee higher security standards for them.
Hence, these nodes are more suitable for adaptation
tasks requiring sensitive information stored in the user
profile. For this reason, Fig. 2 shows the user profile
storage as a gray data storage attached to the inter-
nal nodes. Furthermore, computational power in these
nodes is not an issue because, thanks to the reduced
degree of replication, we do not have the management
problems of the edge nodes. Sophisticated local replica-
tion strategies can provide the amount of computation
power required. An example of local replication is clus-
tering [4] in which a Web switch is placed in front of
the system to transparently distribute requests evenly

among the nodes of the cluster. With such an approach
the only interface to the system is the switch, which
means that computational power can be seamlessly im-
proved by adding nodes to the cluster.

The final issue to be addressed is related to guaran-
teeing adequate data consistency. The most common
approach is to reduce data replication. Literature shows
that data consistency can hardly be provided over more
than 10 nodes and the bound of synchronous updates
is to be relaxed if more replication is needed [11]. Our
approach to reduce data replication is based on hash-
ing mechanisms that partition the space of user pro-
files. The user profile is replicated only on one inter-
nal node (or few nodes, depending on the hash algo-
rithm used and on whether backups are kept) to avoid
replica consistency issues.

We define two different variants of the base archi-
tecture to map adaptation functions on the two levels.
The first, namely strict two-level architecture, forces
state-less personalization and transcoding services to
be deployed on edge nodes, while state-aware person-
alization are to be carried out on the internal nodes.

A more flexible and sophisticated architecture vari-
ant, namely relaxed architecture, could replicate the
portion of the user profile not containing sensitive in-
formation to the edge nodes to move as much adapta-
tion tasks as possible close to the clients. This addi-
tional feature can be implemented at the cost of only
one additional profile replica because the user is typi-
cally connected only to one edge server at once which
represents the entry point to the content adaptation
infrastructure. Whenever the user changes its access
point, the profile is moved to the new edge node ac-
cording to the user migration.

The development of this partial profile replication
requires a support for a finer control in the user infor-
mation management system. Each entry in the user
profile must be enriched with attributes to describe
whether the entry contains sensitive information or not,
these attributes can also be used to export some param-
eters in a read-only mode. These visibility and write
mode attributes can be further exploited to create the
so called group profiles [2]. A group profile is related to
a set of users instead of a single user. A group leader is
a special user which has a read/write access to the pro-
file, while other members of the group can access the
group profile in a read-only mode.

3. Relationship between adaptation and

content providers

In our study we take into account two different sce-
narios depending on whether the content adaptation

architecture has privileged access to content provider
information or not. We propose two variants of the base
two-level architecture, namely independent and custom

architecture. The two variants exploit the different re-
lationship between the Web content and the adapta-
tion providers (that is, the answer to the second ques-
tion outlined in the beginning of the paper).

In the independent architecture the (possibly pay-
ing) customers of the Web content adaptation ser-
vice are the end users. The content adaptation
provider is typically an ISP or some network opera-
tor which provides its customer with the service of tai-
loring any Web site accessed to their needs and prefer-
ences. The adaptation service provider tailors the con-
tent delivery service on the end-user requirements.
An example of such service is the AvantGo com-
pany http://www.avantgo.com/ which enables Web ac-
cess to PDAs by tailoring the Web page layout and
the embedded object size to devices with small dis-
plays. The service provided by AvantGo is mainly
related to state-less personalization and transcod-
ing, however it is a real-world example of independent
architecture. Such service can be provided to both sin-
gle users as well as institutions or companies willing
to enable ubiquitous Web access for their employ-
ees.

In this architecture there is no preferential access
from the adaptation provider to the origin Web servers.
As a consequence the adaptation provider has no way
to know the semantic of the Web applications if we ex-
clude what can be inferred by analyzing the user in-
teractions. The lack of this knowledge hinders the de-
velopment of sophisticated adaptation services which
could take advantage from the knowledge about the
Web page content. A typical example is provided by the
insertion of context-sensitive advertisement banners: if
the personalization system has no idea about the page
being sent to the user, the banners can be only related
to a previously stored user interests list, but cannot be
tailored on the user context. Furthermore user prefer-
ences cannot be easily extracted from the user behav-
ior, and cannot be automatically tuned without recur-
ring to computational expensive data mining to be car-
ried out off-line.

Nevertheless, this architecture still allows the de-
ployment of interesting adaptation services. State-less
personalization and transcoding tasks can be easily car-
ried out. In a similar way, state-aware personalization
tasks which are not context sensitive (such as social
navigation) can be easily provided.

Fig. 3 shows the independent architecture. The
structure is similar to the base two-level architecture
described in Fig. 2, with a significant amount of dis-

Figure 3. Independent architecture

tributed edge nodes and few internal nodes. When a
client request is received by an edge node (Step 1 in
Fig. 3), the edge node decides based on the requested
adaptation service if the content adaptation is to be
carried out locally (Step 2) or if the request is to be
forwarded to an internal node (Step 3) for process-
ing (Step 4). In both cases, since we assume that no
caching is to be adopted, a fetch operation from the
origin server (Steps 5a or 5b) has to be carried out.

In the custom architecture, the customer of the
adaptation service is the Web content provider. In this
case we have a strict collaboration between the content
and the adaptation service providers. This case is com-
mon in the Content Delivery Network model, when a
content provider outsources the delivery of Web con-
tent and Web services to a third-party operating a dis-
tributed infrastructure. Most CDNs focus on the deliv-
ery of static content, although some research has been
devoted to exploit intermediary nodes for the genera-
tion of dynamic documents [15]. In this case, it is a nat-
ural evolution to provide also content adaptation in the
intermediary nodes of the CDN.

The strict relationship between the content provider
and the adaptation provider allows a close interaction
of the adaptation and delivery services with resource
replication strategies and the semantics of the Web-
based services. Besides replications governed by client
requests, it is possible to have pro-active replications in
which the content provider pushes its content on the
internal nodes of the infrastructure. The replication is
not limited to standard Web content but also includes
meta-data on how content must be adapted. This al-
lows the deployment of server-directed adaptation sim-
ilar to what suggested by Knutsson et al. [13] for

transcoding. The rich content replication also enables
generation of Web contents based on the assembly of
fragments of Web resources, using mechanisms similar
to the ESI system [8]. The joint use of content-assembly
functions and server-directed adaptation, united to the
access to content-providers databases, allows the de-
ployment of complex state-aware adaptation services
which are not feasible in the independent architecture,
such as the creation of information portals which ag-
gregate multiple sources according to the user prefer-
ences. On the other hand, the deployment of simpler
adaptation services, such as state-less personalization
and transcoding, that do not require previously stored
information other than that directly supplied by the
client can take full advantage of the highly distributed
and replicated nature of edge nodes.

In Fig. 4 we present the custom architecture. The
main difference between the custom and the base two-
level architecture is the presence of a replica (full or
partial) of the origin server on the same network of
the internal nodes. The asynchronous push-based up-
date mechanism of such replica is shown in Fig. 4 and
is marked with the label A.

The dynamic process of client request service is sim-
ilar to that described in Fig. 3: client requests (Step
1) can be either processed on edge nodes (Step 2) or
forwarded to internal nodes (Steps 3 and 4). Unlike
the previously described architecture, the fetch process
(Steps 5a and 5b) involves the origin server replica in-
stead of the origin server itself.

In both cases of full or partial origin server con-
tent replication, however, the problem of consistency
arises. Indeed, the custom architecture demands spe-
cial care for information consistency because we must
preserve it both in the user profiles and in the Web con-
tent replicas. Multiple approaches have been proposed
to preserve consistency in Web caching [20, 19], but
such approaches cannot be easily adapted to the con-
sistency and security issues related to the delivery of
personalized contents. We hence prefer to preserve con-
sistency by avoiding replication as much as possible by
means of hashing, as described in the previous section.
There is a clear trade-off between consistency of the two
types of information: a strict hashing in the user iden-
tity requires the replication of Web content on every in-
ternal node, while an hash calculated only on the basis
of the requested resource would lead to an unaccept-
able replication of user profiles. It seems then promis-
ing a more sophisticated hashing scheme that uses both
the user ID and the resource ID to select the right in-
ternal node. Such an algorithm selects a group of inter-
nal nodes based on one information (e.g., the user ID)
and then selects the right node within the group based

Figure 4. Custom architecture

on the other (in the example the resource ID).

4. Performance model

We now introduce the model that will be used to
evaluate the performance of the proposed architectures.
The model does not aim to be exact from a quantita-
tive point of view: we use a simplified model to draw
qualitative considerations on the performance impact
of several architectural choices.

Tr =

{

TrEdge
if adaptation on edge node

TrInner
otherwise

(1)

TrEdge
= TNetC−E

+ TAdapt + TFetch (2)

TrInner
= TNetC−E

+ TNetE−I
+ TAdapt + TFetch (3)

The main performance parameter that we will use
to describe performance is the user-perceived response
time of the system Tr defined in Equation 1. In the case
when the client request is serviced by the edge layer
TrEdge

, the response time can be expressed as in Equa-
tion 2, as the sum of the contribution due to network
time from the edge node to the client TNetC−E

, and the
time for the actual adaptation time TAdapt and to the
time due to the interaction with the origin Web server
TFetch. The case where the content adaptation is car-
ried out by the internal layer is modeled by Equation 3.
The response time TrInner

is similar to the previously
described case of TrEdge

, with the only significant dif-
ference that the response time has an additional term
which represents the network delay due to the commu-
nication between the two layers of the adaptation in-
frastructure TNetE−I

.
The terms that contribute to the response time can

be further explained to better understand how they can
affect the system performance.

TNet = TLatency +
Size

BW
(4)

Network time contribution can be defined as the
sum of latency and actual transfer time. The latency
TLatency depends only on network characteristics and
status, while transfer time depends on both the avail-
able bandwidth BW and on the amount of data being
transferred Size, as shown in Equation 4. We report
in Table 1 some common values for both latency and
and bandwidth for typical network settings, that allow
to calculate the bounds of the contribution of network-
related delays. Another contribution to the response
time which deserves further inspection is the adapta-
tion time TAdapt. This value is characterized by high
variability. Previous studies show that content adapta-
tion can take from few milliseconds to seconds. We car-
ried out a set of simple experiments and compared our
results with the literature. Our tests replicate the crit-
ical operations of content adaptation and personaliza-
tion and measure the time taken by the task. The node
used for those experiments is equipped with a 1 GHz
Pentium CPU and 1Gb of RAM. Transcoding services,
in particular the ones involving compression and im-
age manipulation are highly CPU intensive. For an im-
age resizing on banner images the time TAdapt is in
the order of 100 ms, while larger image (such as pho-
tos) may take up to 1 s for transcoding. This is consis-
tent with previous studies on content adaptation which
report that the transcoding time is in the range of hun-
dreds of milliseconds or even seconds [5]. On the other
hand less intensive adaptation tasks such as advertise-
ment/link removal or banner insertion, which are typ-
ical for state-less operation require only simple string
manipulation. Our experiments show that string ma-
nipulation on out experimental testbed take a time in
the order of 10 ms even for large HTML files. Further-
more, caching can be effective in reducing the cost of
transcoding and state-less personalization if the adap-
tation service can be described in terms of providing
few standard versions of each Web resource. On the
other hand operations such as virus scanning are more
intensive than simple HTML code manipulation. In
this case time up to 100 ms can be taken to scan a
single file.

State-aware services are extremely heterogeneous
and can require different operation ranging from the
user preferences-based advertisement insertion to the
cryptographic operation of a digital right management
system.

Table 1 summarizes the typical order of magnitude
for the adaptation time depending on the type of con-
tent adaptation carried out.

Parameter Minimum Maximum

value value

TNetC−E

TLatency 10 ms 102 ms
BW 9 Kbit/s 2 Mbit/s

TNetE−I

TLatency 10 ms 102 ms
BW 1 Mbit/s 50 Mbit/s

TAdapt

TTranscoding 102 ms 103 ms
TState−less 10 ms 102 ms
TState−aware 10 ms 103 ms

TNet∗−O

TLatency 10 ms 102 ms
BW 1 Mbit/s 50 Mbit/s

TServer 1 ms 102 ms

Table 1. Parameters of the model

TFetch = TNet∗−O
+ TServer (5)

The final contribution to the response time is re-
lated to the time taken for the interaction with the ori-
gin Web server, which we describe as the fetch time,
TFetch. Equation 5 shows that the fetch time is com-
posed by the sum of the time due to network data
transfers, that is TNet∗−O

and the time taken by the ori-
gin Web server to respond TServer. While we already
discussed the characteristics of Wide Area Network de-
lays, the contribution of TServer requires some more ex-
planation. Servicing a static Web page is a simple task
which usually takes less than 1 ms. On the other hand,
modern Web systems often involve dynamic generation
of Web contents which can require up to hundreds of
milliseconds, as reported in literature [6].

5. Architecture evaluation

From the previously described model we can draw
a qualitative evaluation of the architectural choices
sketched in Sections 2 and 3. We are interested in un-
derstanding which architectural choices provide better
performance and under which circumstances the differ-
ence is more evident.

We start our analysis by focusing on the different
content adaptation functions. From Section 2 we recall
that in the strict architecture state-aware personaliza-
tion is carried out on the internal nodes, while other
forms of content adaption are carried out on the edge
nodes. On the other hand the relaxed architecture tries
to shift also non-critical state-aware personalization on
the edge level.

Since we cannot place any constraint on TNetC−E

nor on TFetch, we focus on the remaining contribution

 1

 10

 100

 10 100

T
r’
(s

tr
ic

t)
 /

 T
r’
(r

e
lx

e
d

)

TnetE-I [ms]

Tadapt=10 ms
Tadapt=100 ms

Tadapt=1000 ms

Figure 5. Comparison of strict and relaxed architec-

tures

to the response time as defined in the previous section.
In particular we focus our analysis on the case of state-
aware content adaptation in which the two architec-
tures provides different performance. Let T ′

r(strict) =
TAdapt + TNetE−I

and T ′

r(relaxed) = TAdapt. Fig. 5

shows the ratio
T ′

r(strict)
T ′

r(relaxed) for the two architectures as

a function of the network delay between edge and inter-
nal nodes (TNetE−I

) and adaptation time (TAdapt). The
graph can be easily understood by considering Equa-
tion 3. If TAdapt >> TNetE−I

, then the penalty (in the
form the network delay) to be paid to carry out con-
tent adaptation on the internal node is negligible if
compared with the time taken by the actual content
adaptation task. Hence, in the case of computational-
intensive personalization, the level that actually car-
ries out content adaptation is not an issue and both
strict and relaxed architectures are viable solutions.
On the other hand, in the case of light personaliza-
tion, such as banner insertion/removal, TAdapt is com-
parable with TNetE−I

(if not lower). Hence the choice of
using edge nodes for the adaptation brings significant
performance gain. Obviously the lighter is the adapta-
tion service, the bigger is the benefit from using the
edge node for its deployment.

We now compare the performance of the indepen-
dent and custom variants of the two-level architecture.
The main difference between independent and custom
architectures lies in the TFetch expression: for the cus-
tom architecture the network contribution TNet∗−O

is
negligible and TFetch is related only to the server time
TServer.

The performance difference between the two vari-
ants of the architecture is more evident in the case of
resources where TServer is negligible, as in the case of
static resources, while the performance difference is less
significant when the origin server generates dynamic re-
sources with time consuming calculations. Fig. 6 shows

 1

 10

 100

 1000

 10 100

T
fe

tc
h

(i
n

d
e

p
e

n
d

e
n

t)
 /

 T
fe

tc
h

(c
u

s
to

m
)

Tnet*-O [ms]

Tserver=1 ms
Tserver=10 ms

Tserver=100 ms

Figure 6. Comparison of independent and custom ar-

chitectures

the performance gain in TFetch depending on the ori-
gin server time and on the network delays. If we con-
sider a TServer = 100ms, we observe that the ratio be-
tween the fetch time of the independent and the cus-
tom architectures is not highly affected by network de-
lay and is close to 1, while for very fast Web server re-
sponses (TServer = 1ms) the custom architecture pro-
vides much better performance.

6. Related Work

Content adaptation has been an interesting topic in
Web-related literature of the last years. We can ascribe
most contribution to two large groups of research top-
ics: proposal of adaptation services and proposal of ef-
ficient and scalable architectures. Most studies on con-
tent adaptation services propose novel sophisticated
adaptation systems. Examples include text-to-speech
conversion [1] directed to single users as well as col-
laborative Web browsing [2]. Even more interest has
been devoted to the proposal of transcoding services
aiming to enable ubiquitous Web access from hetero-
geneous client devices [7, 3]. However, most of these
studies does not take into account performance issues
and the only proposals to improve system scalability
are related to the introduction of caching [17] or lo-
cally distributed clusters [9].

Studies proposing scalable content adaptation and
delivery systems, evaluate distributed architectures of
collaborative intermediary nodes. Different architec-
tures has been evaluated ranging from flat and hierar-
chical schemes [5]. However most of these studies only
focus on transcoding services, which does not intro-
duce significant security and consistency problems. A
noteworthy proposal is a peer-to-peer content adap-
tation system [16] called Tuxedo which allows ubiq-
uitous Web access providing both personalization and
transcoding services. However, the study does not eval-

uate in deep detail security issues arising from the dis-
tribution of sensitive information among untrustwor-
thy nodes. The importance of providing security and
consistency by controlling information replication has
been pointed out recently in the field of distributed
Web systems [10]. Although the study does not focus
on Web content adaptation but is more directed to-
wards generation of dynamic Web content, this study
confirms our concern for security and consistency guar-
antee which imposes bounds that must be taken into
account in the design of scalable distributed architec-
tures. Other studies [20, 19] propose algorithms and
protocols to ensure Web cache consistency, however,
such solutions, while reducing the cost of cache up-
date, do not address the issues related to data privacy
and cannot be easily adapted to the case of personal-
ized Web content.

7. Conclusions

In this paper we proposed a novel distributed archi-
tecture and four variants of the base two-level model.
We discuss the security and consistency issues that
must be addressed to provide sophisticated state-aware
personalization and we show how these issues are ad-
dressed by our architecture.

We proposed two architectural variants (strict and
relaxed) based on whether state-aware adaptation is to
be carried out only on the internal nodes or can be de-
ployed on the edge nodes. Furthermore we proposed
two additional architecture variants (independent and
custom) based on the possibility of replication of con-
tent provider information on the internal nodes.

The paper provides an evaluation of the four archi-
tecture variants. We show that the relaxed architec-
ture outperforms the strict architecture. Such differ-
ence is more evident for light personalization services
when the adaptation time is comparable with network
delays: in such case the relaxed architecture is more
than 10 times faster than the strict architecture. A sim-
ilar performance comparison is provided also for inde-
pendent and custom architectures, with custom archi-
tecture outperforming the independent architecture es-
pecially in the case when the origin Web server is much
faster with respect to network delays.

References

[1] M. Barra, R. Grieco, D. Malandrino, A. Negro, and
V. Scarano. Texttospeech: a heavy-weight edge service.
In Poster Proc. of 12th WWW Conference, Budapest,
HU, 2003.

[2] M. Bonnet. Personalization of Web services: opportuni-
ties and changes. Ariadne, (28), Jun. 2001.

[3] M. Butler, F. Giannetti, R. Gimson, and T. Wiley. De-
vice independence and the Web. IEEE Internet Com-
puting, 6(5):81–86, Sept./Oct. 2002.

[4] V.Cardellini,E.Casalicchio,M.Colajanni, andP.S.Yu.
The state of the art in locally distributed web-server sys-
tems. ACM Comput. Surv., 34(2):263–311, 2002.

[5] V.Cardellini,M.Colajanni,R. Lancellotti, andP. S.Yu.
A distributed architecture of edge proxy servers for co-
operative transcoding. In Proc. of 3rd IEEE Workshop
on Internet Applications, June 2003.

[6] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and
W. Zwaenepoel. Performance comparison of middle-
ware architectures for generating dynamic web content.
In Proc. of 4th Middleware Conference, Jun 2003.

[7] C. S. Chandra, S. Ellis and A. Vahdat. Application-
level differentiated multimedia Web services using qual-
ity aware transcoding. IEEE J. on Selected Areas in
Communication, 18(12):2544–2465, Dec. 2000.

[8] Edge Side Includes, 2002. http://www.esi.org/.

[9] A. Fox, S. D. Gribble, Y. Chawathe, E. A. Brewer, and
P. Gauthier. Cluster-based scalable network services. In
Proc. of 16th ACM SOSP, pages 78–91, Oct. 1997.

[10] L. Gao, M. Dahlin, A. Nayate, J. Zheng, and A. Iyen-
gar. Application specific data replication for edge ser-
vices. In Proc. of 12th WWW Conference, Budapest,
HU, 2003.

[11] J. Gray, P. Helland, P. E. O’Neil, and D. Shasha. The
dangers of replication and a solution. In Proc. of the
1996 ACM SIGMOD International Conference on Man-
agement of Data, Jun. 1996.

[12] A. Joshi. On proxy agents, mobility, and Web access.
Mobile Networks and Applications, 5(4):233–241, 2000.

[13] B.Knutsson,H.Lu, andJ.Mogul. Architecture andper-
formance of server-directed transcoding. ACM Trans.
on Internet Technology, 3(4):392–424, Nov. 2003.

[14] R. Mohan, J. R. Smith, andC.-S. Li. Adaptingmultime-
dia Internet content for universal access. IEEE Trans.
on Multimedia, 1(1):104–114, Mar. 1999.

[15] M. Rabinovich, Z. Xiao, and A. Aggarwal. Computing
on the edge: A platform for replicating internet applica-
tions. In Proc. of 8th Int’l Workshop on Web Content
and Distribution, Hawthorne, NY, Sept. 2003.

[16] W. Shi, K. Shah, Y. Mao, and V. Chaudhary. Tuxedo: a
peer-to-peer caching system. In Proc. of PDPTA03, Las
Vegas, NV, June 2003.

[17] A. Singh, A. Trivedi, K. Ramamritham, and P. Shenoy.
PTC:Proxies that transcodeandcache inheterogeneous
Web client environments. World Wide Web, 7(1):7–28,
Jan./Mar. 2004.

[18] G. Singh. Guest editor’s introduction: Content repur-
posing. IEEE Multimedia, 11(1):20–21, Mar. 2004.

[19] R. Tewari, T. Niranjan, and S. Ramamurthy. WCDP:
a protocol for Web cache consistency. In Proc. of 7th
Int’l Workshop on Web Content Caching and Distribu-
tion (WCW), Boulder, CO, aug 2002.

[20] J.Yin, L.Alvisi,M.Dahlin, andA. Iyengar. Engineering
web cache consistency. ACM Trans. on Internet Tech-
nology, 2(3):224–259, Aug. 2002.

