
Access control enforcement on query-aware

encrypted cloud databases

Luca Ferretti, Michele Colajanni, and Mirco Marchetti

University of Modena and Reggio Emilia

Email: {luca.ferretti, michele.colajanni, mirco.marchetti}@unimore.it

Abstract—The diffusion of cloud database services requires a
lot of efforts to improve confidentiality of data stored in external
infrastructures. We propose a novel scheme that integrates data
encryption with users access control mechanisms. It can be used
to guarantee confidentiality of data with respect to a public
cloud infrastructure, and to minimize the risks of internal data
leakage even in the worst case of a legitimate user colluding with
some cloud provider personnel. The correctness and feasibility of
the proposal is demonstrated through formal models, while the
integration in a cloud-based architecture is left to future work.

I. INTRODUCTION

The cloud Database as a Service (DBaaS) [1] is a success-
ful paradigm where the database engine and the storage devices
are located in some cloud infrastructure. This scheme allows a
cloud customer organization, called tenant, to outsource data
storage and computation and to leverage availability, scalability
and pay-per-use that typically characterize cloud services.
Nevertheless, confidentiality concerns about data stored in
remote locations and managed by unknown administrators are
hindering a wide adoption of the cloud database paradigm [2],
[3].

This paper addresses the issues related to information
leakage due to the tenant personnel and information theft due
to the provider personnel by combining encryption and access
control mechanisms that represent the two pivotal schemes
of any research data confidentiality solution. The interesting
problem comes from the consideration that we are not referring
to a basic cloud storage scenario where any robust encryption
algorithm is applicable. Instead, we are considering relational
databases where a legitimate tenant user should be able to
issue SQL operations on data stored in a cloud infrastructure.
This paper gives an original contribution to the state-of-the-
art by proposing a new model for the combination of data
encryption algorithms with encryption enforcement of database
access control policies.

The access control mechanisms offered by relational
databases allow a database administrator to specify which
data can be accessed by each legitimate user according to
some tenant security policies. The problem is that access
control mechanisms are typically applied at the front-end
of the database, hence any subject having direct access to
the database storage could bypass them. A similar scenario
occurs in the cloud database service where the cloud provider
personnel has legitimate access to the whole back-end storage
infrastructure hosting the databases. Hence, a malicious admin-
istrator could gain access to data outsourced by the customers
of the cloud service without proper credentials [3].

Information confidentiality of data stored in cloud services
can be achieved through encryption, but valid architectures
must guarantee that all decryption keys are managed by the
tenant and never by the cloud provider. For this reason, we
cannot adopt encryption solutions that work for relational
databases managed on private infrastructures (e.g., transparent
data encryption [4]). Even the proposal of the same authors
in [5] has some risks of information leakage because the
encryption of the cloud database information is based on one
master key shared by all legitimate users.

The original model proposed in this paper uses multiple
keys and allows a database administrator to derive crypto-
graphic keys starting from high level access control policies,
and to distribute to each user only the decryption keys that are
necessary to decipher all and only the information to which
he has legitimate access. The enforcement of access control
policies through encryption schemes guarantees that data out-
sourced to the public cloud database are always managed in
an encrypted way, thus guaranteeing confidentiality for data in
motion from and to the client-cloud, in use and at rest in the
cloud. Moreover, it minimizes information leakage in the case
of a user key loss or a compromised client machine, and even
in the worst case scenario where a malicious but legitimate
user colludes with a cloud provider personnel by disclosing
his decryption keys. In such a case, a partial data leakage is
inevitable but it is limited to the data set accessible by the
malicious user, while a cloud provider adversary cannot gain
additional information about other data that remain inviolable
through standard attack techniques.

The remaining part of this paper is structured as following.
Section II describes the main requirements and the constraints
of the access control and encryption models. Section III
contains the novel solutions, where feasibility and correctness
of the encryption scheme are demonstrated through formal
models. Section IV compares our proposal against existing
solutions related to selective access control and database
encryption techniques for the cloud. Section V outlines the
main results and possible future work.

II. ENCRYPTION AND ACCESS CONTROL MODELS

We consider a typical scenario in which a tenant organi-
zation requires a database service from a public cloud DBaaS
provider [1]. In the tenant, there is a database administrator
role (DBA) and multiple database users. The DBA is a trusted
subject. He has complete access on all database information,
and is in charge of enforcing the access control policies of the
tenant. Each tenant user has a different level of trust and a
consequent authorization to access a specified subset of the

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.172

219

2013 IEEE International Conference on Cloud Computing Technology and Science

978-0-7695-5095-4/13 $31.00 © 2013 IEEE

DOI 10.1109/CloudCom.2013.132

717

Fig. 1: Reference model for a multi-user encrypted cloud
database.

database information. His database view is limited by the
tenant access control policies that are implemented through
authorization mechanisms. We also assume that the cloud
provider is a semi-honest subject. This security model is also
called honest-but-curious [6] and it is commonly adopted in
literature (e.g., [5], [7]–[10]). In other words, we assume that
the cloud employees execute correctly database protocols and
mechanisms and do not modify stored data nor query results
that would be noted by the tenant and would compromise the
reputation of the cloud provider, but they could try to access
tenant information stored in the cloud database.

Figure 1 evidences the considered scenario, where the
cloud database stores all the tenant data while the tenant
manages the following types of information: access control
policies, users credentials, root credentials. Tenant data denote
the information that is stored in the cloud database. They are
accessed by trusted database users, such as Alice and Bob,
through SQL operations. Access control policies are the rules
of the tenant that define which data can be accessed by each
user. For example, Alice authorized (tenant) data denote all
and only tenant data on which Alice has legitimate access
as defined by the access control policies. Users authorized
data can be accessed by one or multiple tenant users, such
as Alice & Bob authorized data. Alice credentials include
all information that she requires to access and execute SQL
operations on all and only her authorized data. The DBA is
the only tenant subject that has access on root credentials
granting complete access on cloud database information and
data structures. A similar usage scenario poses several research
challenges that we specify through the following requirements:

‚ pR1q: any confidential data outside the tenant domain
must be encrypted;

‚ pR2q: users must be able to access only authorized
data according to the access control policies. In such
a way, even if user credentials are leaked, a malicious
subject cannot get information that are inaccessible to
that user;

‚ pR3q: encrypted tenant data stored in the cloud must
allow the execution of SQL operations.

No existing proposals satisfy all previous three require-
ments. Here, we outline the three closest results, while an in-

depth description is in Section IV. The SQL-aware encryption
schemes presented in [7] satisfy pR1q and pR3q, but do not
enforce the standard database access control mechanisms on
tenant data stored in the cloud as required by pR2q. The
architecture proposed in [5] allows the execution of SQL
operations from independent clients on an encrypted cloud
database without intermediate servers, thus satisfying pR1q
and pR3q, because it uses one master key for all users.
Encryption schemes described in [10] satisfy pR1q and pR2q
because they enforce access control of users on encrypted data,
but they consider a public-subscribe scenario in which SQL
operations cannot be executed on encrypted data pR3q.

This paper proposes the first scheme enriched with en-
cryption and access control schemes that satisfy all three
requirements. Let us outline the main idea. All tenant data
stored in the cloud database are encrypted through SQL-
aware encryption schemes thus allowing the execution of SQL
operations as required by pR1q and pR3q. Tenant data are
encrypted through different encryption keys, and each user is
provided with unique credentials that allows him to obtain all
and only the encryption keys associated with his authorized
tenant data as required by pR2q. The basic concepts and
notations related to access control and SQL-aware encryption
are described in Sections II-A and II-B, respectively.

A. Access control

The objective of access control policies and mechanisms
is simple: tenant users must access all and only authorized
data on the cloud database, where authorizations are specified
by the tenant access control policies. Standard access control
mechanisms (e.g., [11]) that are implemented in all modern
database management systems do not provide any confiden-
tiality guarantee against honest-but-curious cloud providers.
Indeed, they apply access control policies at the edge of the
database infrastructure. Hence, data are not protected from
malicious subjects that can bypass the edge controller by
accessing the physical devices as in a cloud scenario. For
this reason, we propose a novel encryption scheme that en-
forces standard relational database access control mechanisms
by encrypting tenant data through multiple keys, that are
distributed to the database users according to tenants access
control policies (e.g., [10]). The formal notations of the access
control model and of the encryption enforcement are presented
below.

We represent the access control policies through the triple
pU ,O,Aq, where U is the set of users, O is the set of objects,
and A is the access matrix [11]. For each user u P U and
for each object o P O, there exists a binary authorization rule
a P A that defines if access to o by u is denied (au,o “ 0)
or allowed (au,o “ 1). User u capability list capu is the set
of objects to which u has authorized access. We remark that
set of objects O must be modeled upon the structure of tenant
data stored in the cloud database in order to allow definition
of standard database access control mechanisms.

Let the set of resources R represent plaintext tenant data,
E the set of encrypted tenant data, and K the set of decryp-
tion keys. We assume the existence of a decryption function
D : E ˆ K ÞÝÑ R such that for each encrypted resource
e P E , there exists a key k P K that allows us to calculate

220718

(a) Plaintext table

c1 cn cN

R1 x1,1 x1,n x1,N

Rj xj,1 xj,n xj,N

RJ xJ,1 xJ,n xJ,N

ψ1 ψ
n,φ1
m ψ

n,φ2

m`1
ψ
n,φ3

m`2
ψM

R1 y1,1 y1,m “ φ1pkn,1, x1,nq y1,m`1 “ φ2pkn,2, x1,nq y1,m`2 “ φ3pkn,3, x1,nq yJ,M

Rj yj,1 yj,m “ φ1pkn,1, xj,nq yj,m`1 “ φ2pkn,2, xj,nq yj,m`2 “ φ3pkn,3, xj,nq yJ,M

RJ yJ,1 yJ,m “ φ1pkn,1, xJ,nq yJ,m`1 “ φ2pkn,2, xJ,nq yJ,m`2 “ φ3pkn,3, xJ,nq yJ,M

(b) SQL-aware encrypted table

Fig. 2: Encrypting values of database tables through SQL-aware encryption algorithms.

r “ Dpk, eq, where r P R. For simplicity, we define er P E
and kr P K as the encrypted resource and the decryption key
for resource r P R, i.e. r “ Dpkr, erq. We define a user u
keyring Ku Ď K as the set of all the decryption keys that
user u owns, and user accessed resources Ru as the set of
all and only the resources that u is able to decrypt using
the keys included in Ku. The encryption scheme correctly
enforces tenant access control policies if all users keyrings
include the keys that decrypt all and only resources included
in their capability lists [10], [11].

@u P U ,@r P R, kr P Ku ðñ r P capu (1)

B. SQL-aware encryption scheme model

The requirement pR3q imposes that the proposed architec-
ture must be able to execute SQL operations on encrypted data.
To this purpose, we refer to SQL-aware encryption schemes
proposed in [5], [7], [12]. SQL-aware schemes make use of
several encryption algorithms, each supporting only a subset
of SQL operators. In realistic database workload (e.g., the
standard TPC-C testbed), several different SQL operators are
applied to the same column. Hence, a problem arises if no
encryption algorithms exist that support all the SQL operators
that have to be executed on a single column. The solution
that is commonly adopted in literature [7], [13] is to create
many encrypted versions of the same plaintext column. Each
encrypted version is ciphered through a different SQL-aware
encryption algorithm, such that each required SQL operator
is supported by at least one of the encrypted versions. Here,
we define formal notation of the schemes, and we remark
constraints that we take into account for the design of the
encryption enforcement scheme in Section III.

Let us consider the plaintext database table repre-
sented in Figure 2a, that is composed by N columns
c1 . . . cn . . . cN , J rows R1 . . . Rj . . . RJ , and N ˆ J plain-
text values x1,1 . . . xj,n . . . xJ,N . The corresponding encrypted
table is represented in Figure 2b. It consists of M columns
ψ1 . . . ψm . . . ψM (M ě N), the same number J of rows,
and M ˆ J encrypted values y1 . . . yj,m . . . yJ,M . Let y “
φpk, xq, φ P Φ denote encryption of the plaintext value x
through the encryption key k, where φ is the SQL-aware
encryption algorithm, and Φ is the set of all SQL-aware

algorithms available in the system. An encrypted column ψm

can also be represented as ψn,φ to denote that it includes values
of the plaintext column cn encrypted through the encryption
algorithm φ. As an example, in Figure 2 the plaintext column

cn is associated to encrypted columns ψn,φ1

m , ψ
n,φ2

m`1
, ψ

n,φ3

m`2
that

make use of three different SQL-aware encryption algorithms
φ1, φ2, φ3 P Φ, using encryption keys kn,1, kn,2, kn,3, respec-
tively. We remark that each encrypted column may have a
different key size due to the different SQL-aware algorithms.
Hence, each key is a stream of bits whose length depends on
the SQL-aware algorithm.

We define Ψ as the set of all the encrypted columns.
Authorizing access to an encrypted column ψn,φ implies ac-
cessing information included in all columns ψn,φ‹

,@φ‹ P Φn,
where Φn :“ tφ P Φ : ψn,φ P Ψu, because they store
the same information of the plaintext column cn. Hence, the
proposed model imposes the finest authorization granularity to
sets of encrypted columns that correspond to the same plaintext
column. That is, if a user keyring includes the decryption key
of a generic encrypted column, then he must also include the
decryption keys of all the others encrypted columns associated
to the same plaintext column.

@u P U ,@ψn,φ P Ψ,

kn,φ P Ku ñ kn,φ
‹

P Ku,@φ
‹ P Φn (2)

III. SCHEME DESIGN

We present the novel scheme and related models in three
phases that gradually enrich the previous step: Section III-A
describes the model of the plaintext database structure; Sec-
tion III-B defines the model of the encrypted database; Sec-
tion III-C defines the scheme for the distribution of the users
credentials.

A. Plaintext database model

We model the plaintext database through the following
triple:

P :“ pS,ą,Rq (3)

where pS,ąq is the partially ordered set (poset) of the database
structures, and R is the set of resources that represents tenant
data.

221719

Fig. 3: The structure poset tree and the associated resources
in the plaintext database model.

Each element s P S is a structure of the database (e.g., a
table, a column), and the ordering operator x ą y, where x, y P
S, denotes that x is an ancestor of y, and y is a descendant of
x. If a third structure z P S : x ą z ą y does not exist, then
we use the notation x Í y, where x is a parent node of y, and
y is a child node of x. We remark that a parent (child) is also
an ancestor (descendant), while the opposite is not true. All
inclusion relations between database structures are represented
as parent-child relations in the poset (e.g., column c of the table
t is represented by t Í c). Moreover, we define that each s is
uniquely identified by a label �s.

Each element r P R is the set of all information stored in
a column of the database. If we model the structure poset as a
hierarchical tree, then there is a 1:1 correspondence between
each resource r P R and each leaf of the poset tree. As an
example, we refer to Figure 3 that represents the model of a
plaintext database schema (s1) containing two tables (s2, s3),
each consisting of two columns (s4, s5, and s6, s7). Columns
represent the leafs of the poset tree, and the set of data stored in
each column are represented as a resource (i.e., r1 represents
the actual data stored in column s4). The labels associated
with structures are the actual names of the structures in the
database, concatenated with the absolute path from the root of
the structure poset. As an example, the label �s4 of structure
s4 is ‘db.t1.c1’.

We define that a structure s P S associated to a resource
r P R is a parent of the resource r (s Í r). Moreover,
all structures s‹ P S that are ancestors of s (s‹ ą s) are
also ancestors of r (s‹ ą r). We remark that a discretionary
access control model can be defined on the model through the
triple pU ,S,Aq that extends the generic pU ,O,Aq described in
Section II-A. In other words, the objects O are implemented
as plaintext database structures S, and an authorization to a
structure recursively apply to all the descendant structures. As
an example, an authorization au,s “ 1, where u P U and
s P S, authorizes u to access s and all descendant structures
s‹ P S, s ą s‹ and descendant resources r P R, s ą r.

B. Encrypted database model

We model the SQL-aware encrypted database through the
set E, that is an extension of P (3):

E :“ pS,ą,R,G,V,ΦR,K, E , T , θ, γq (4)

where:

pS,ą,Rq is the partially ordered set (poset) of the en-
crypted database structures, as already defined for the plaintext
database model.

G is the set of the access groups, where each g P G is a set
of structures Sg Ă S . We assume also that each g is uniquely
identified by a label �g .

V is the set of derivation keys [8]. Derivation keys are used
to compute encryption keys, and each access group has exactly
one derivation key. A user u that owns an authorization for
the access group g is able to obtain the derivation key vg P V
associated to g.

ΦR is the set of the SQL-aware encryption algorithms used
to encrypt resources R. We assume that it is a subset of the
algorithms available in the system ΦR Ď Φ (see Section II-B).
We define that each algorithm φ P ΦR is uniquely identified
by a label �φ.

K is the set of encryption keys used to encrypt plaintext
resources (see Section II-B).

E is the set of the encryption groups. Each encryption group
e P E is a set of resources Re Ď R that are encrypted through
the same encryption key ke and same SQL-aware encryption
algorithm φ P ΦR.

T is the set of tokens [8], [14]. Each token t P T is a
public value that is used to compute derivation and encryption
keys. Any tenant users can access all the tokens.

θ is a derivation function [15] that makes it possible to
compute derivation keys, defined as:

θ : V ˆ G ˆ T ÞÝÑ V (5)

@pa, bq P G ˆ G : a Í b ñ D! t P T : θpva, �b, tq “ vb (6)

γ is a derivation function that makes it possible to compute
information associated with encryption groups, that are labels
of the included structures and decryption keys. We define the
function as:

γ : V ˆ G ˆ Φ
n
R ÞÝÑ Gn ˆ Kn, n ě 1 (7)

@pa,B,ΦBq, a P G, B Ď E ,ΦB Ď ΦR : @b P B, a Í b

ñ γpva, �a, �ΦB
q “ tp�b,Kbq : b P Bu (8)

As an example, we refer to the encrypted database shown
in Figure 4. Encrypted database structures (s1 . . . s10) are rep-
resented by triangles, access groups (g1 . . . g7) by boxes with
rounded corners, encrypted resources (r1 . . . r7) by circles, and
encryption groups (e1 . . . e6) by boxes. In this example, there
is one database schema (s1) that contains two tables (s2, s3).
The table s2 contains four columns (s4 . . . s7), and the table s3
contains three columns (s8 . . . s10). Each column is associated
to the corresponding set of encrypted data (r1 represents the
actual data stored in column s4). This scheme shows asso-
ciations between access groups and structures, and between
encryption groups and encrypted resources. As an example,
access group g2 “ ts2u, while g5 “ ts5, s6, s7u. Similarly, we
remark encryption groups e1 “ tr1u and e4 “ tr4, r5u.

Figure 5 refers to the same encrypted database represented
by the Figure 4, but highlights the relations among access

222720

Fig. 4: Scheme of the structure of an encrypted database in
the proposed model.

Fig. 5: Scheme of the access and encryption groups of an
encrypted database in the proposed model.

and encryption groups. Here, each access group g1 . . . g7 is
associated to a derivation key v1 . . . v7, respectively. Similarly,
each encryption group e1 . . . e6 is associated to an encryption
key k1 . . . k6. Each arrow represents a parent-child relation-
ship between two access groups, or one access group and
one encryption group. Each arrow that connects two access
groups is associated to a token. As an example, a parent-child
relationship g1 Í g2 is associated to the token t1,2.

For the sake of clarity, from now on we refer to the
proposed models of plaintext (3) and encrypted databases (4)
by using the following disambiguated notations.

P :“ pSP ,ą,RP q

E :“ pSE ,ą,RE ,G,VE ,ΦE ,K, E , TE , θ, γq

We define that for each plaintext structure si P SP , there
exists an associated access group gi P G in the encrypted
database. In particular, we assume the existence of a cryp-
tographic function h that allows to calculate an access group
label �gi from the access group derivation key �vi

and the
plaintext structure si.

@s P SP , D!g P G : �g “ hpvg, �sq (9)

Thanks to this definition, we can conclude that discre-
tionary access control policies AP defined in the discretionary
access control model pU ,SP ,AP q for a plaintext database P

(see Section III-A) are enforced to the corresponding triple
pU ,G,AEq defined for the encrypted database E. That is, we
can transparently transform any authorization rule au,si P AP

defined on a plaintext plaintext structure si into a correspond-
ing authorization rule au,gi P AE defined on the corresponding
access group gi. The encrypted database enforces such access
authorization, because a user u is authorized to access si if and
only if he is able to calculate the derivation key associated with
the corresponding access group vgi .

If a user u owns an authorization for the access group
g, then u can access the access group derivation key vg ,
and is implicitly authorized for all the access groups and the
encryption groups descending from g. If a user u is implicitly
authorized to the encryption group e, then he can decrypt all
encrypted resources that are included in e. For example, a user
u authorized for the access group g2 owns an implicit autho-
rization to g4 and g5. Hence, he is also implicitly authorized
to access e1, e2 . . . e4. Then, the user u can decrypt encrypted
resources r1, and r2 . . . r5. In this scenario, we show how u
authorized on g2 is able to decrypt r3. User u already knows
v2, by definition of V , t2,5, because all tokens are public,
and l5, because he is implicitly authorized for g5. Hence, he
can compute v5 through the formula (6): v5 “ θpv2, l5, t2,5q.
After having computed v5, u can use γ to compute the set
of keys associated with encryption groups e2, e3, e4 through
the formula (8): tk2, k3, k4u “ γpv5, �5, t�φe2

, �φe3
, �φe4

uq.
Information included in the encrypted resource r3 can be
decrypted through the key k3.

C. Users credentials distribution scheme

We define the distribution scheme D that enforces the
discretionary access control policies pU ,G,Aq:

D :“ pU ,G,A,VE ,VU , TU , θq (10)

where:

pU ,G,Aq represents the discretionary access control policy
on the encrypted database, as described in Section III-B.

VE denotes the set of the encrypted database derivation
keys, also included in the encrypted database model E (4).

VU is the set of the users derivation keys. Each element
vu P VU is a secret derivation key owned by user u P U .

TU is the set of the users tokens. We denote Tu Ă TU
the set of tokens associated with user u P U . We remark that
tokens can be accessed by all tenant users.

θ is a derivation function, as defined in (6).

The proposed scheme is based on the node-based key
assignment schemes proposed in [8], [14], that we adapt to
the considered cloud scenario. In our context, each tenant user
u P U owns a single derivation key vu, and there exists a set of
public tokens Tu Ă TU associated with him. This user is able
to calculate all and only derivation keys vg P Vu through the
function θ (6), if ond only if there exists an associated token
tvu,vg

P Tu.

223721

This scheme assumes that the tenant DBA owns root
credentials CR that allow him to know any information stored
in the encrypted database and all users credentials, because
he requires them to calculate user tokens TU with respect to
access control policies A. Hence, we define that the set of
the user tokens Tu must include a token tvu,vg

if and only if
the plaintext database structure s P SP is included in the user
capability list capu, and all the other structures included in the
list are not ancestors of s.

@u P U ,@ps, gq, s P SP , g P G,

s P capu ^ s‹ č s,@s‹ P capu ðñ tvu,vg
P Tu (11)

IV. RELATED WORK

This paper addresses confidentiality issues that are the
major problem affecting the widespread diffusion of cloud
database services. The innovation of the proposed models and
schemes is to enforce access control mechanisms on cloud
databases while allowing the execution of SQL operations on
encrypted data stored in the cloud that are accessible by any
tenant cloud client. At the best of our knowledge, no existing
proposal is able to satisfy both requirements. For example,
there are encryption schemes that enforce access control mech-
anisms for cloud storage services [16], and other solutions
that support concurrent accesses from independent clients [17].
Using query-aware encryption algorithms [7] allow a user to
obtain all and only the requested data from the database,
but that proposal is based on a trusted proxy that intercepts
all operations between the tenant clients and the encrypted
database, executes data re-encryption, and implements access
control policies as in a privately managed infrastructure. No
decryption keys are provided to users, but the trusted proxy
affects service availability and elasticity of the cloud service.
In [5] the same authors propose an architecture that avoids the
necessity of a trusted proxy, thus allowing multiple clients to
directly execute concurrent SQL operations on the encrypted
database, but encryption is based on one master key. This
solution simplifies implementation and administration of the
architecture, but it would not guarantee the acceptable levels
of confidentiality required to face possible insider malicious
users. For these reasons, in this paper we look for a solu-
tion that guarantees the execution of SQL operations in an
encrypted cloud database, and prevents users to have the same
decryption key regardless their access privileges. Previous
research in access control enforcement through encryption
in [10] cannot be naively adopted because it refers to a publish-
subscribe scenario, where the architecture requires to maintain
lots of data on the user clients side. This scheme does not work
in collaborative scenarios where multiple users can insert and
update data, and concurrent SQL operations must be managed.

V. CONCLUSIONS

We propose a novel encryption scheme integrated with an
access control mechanism that guarantees confidentiality of
information stored in cloud databases. Unlike state-of-the-art
proposals, the proposed scheme allows a customer company
to encrypt all stored and transmitted data, to enforce standard
database access control mechanisms where each tenant user
has a different secret key, and to support the execution of
SQL operations on encrypted data stored in a public cloud
provider. This solution guarantees data confidentiality against

a semi-honest cloud provider and limits the risk of information
leakage due to internal users, even against the theft of access
credentials, and the possibility that an internal user colludes
with a cloud employee. This paper defines the overall idea
and the formal models that demonstrate the correctness and
feasibility of the proposed scheme. The integration of the
proposal into cloud-based architectures is left to future work.

REFERENCES

[1] H. Hacigümüş, B. Iyer, and S. Mehrotra, “Providing database as a
service,” in Proc. of the 18th IEEE International Conference on Data

Engineering, February 2002.

[2] W. Jansen and T. Grance, “Guidelines on security and privacy in public
cloud computing,” Tech. Rep. NIST Special Publication 800-144, 2011.

[3] Cloud Security Alliance, “The notorious nine: Cloud
computing top threats in 2013,” https://cloudsecurityalliance.org/
the-notorious-nine-cloud-computing-top-threats-in-2013, September
2013.

[4] Oracle, “Oracle transparent data encryption,” http://www.oracle.com/
technetwork/database/options/advanced-security/index-099011.html,
September 2013.

[5] L. Ferretti, M. Colajanni, and M. Marchetti, “Distributed, concurrent,
and independent access to encrypted cloud databases,” IEEE Transac-

tions on Parallel and Distributed Systems, 2013.

[6] O. Goldreich, Foundations of Cryptography: Volume 2, Basic Applica-

tions. Cambridge university press, 2004.

[7] R. A. Popa, C. M. S. Redfield, N. Zeldovich, and H. Balakrishnan,
“CryptDB: protecting confidentiality with encrypted query processing,”
in Proc. of the 23rd ACM Symposium on Operating Systems Principles,
October 2011.

[8] S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Paraboschi, and
P. Samarati, “Over-encryption: management of access control evolution
on outsourced data,” in Proceedings of the 33rd international conference

on Very large data bases, September 2007.

[9] H. Hacigümüş, B. Iyer, C. Li, and S. Mehrotra, “Executing sql over
encrypted data in the database-service-provider model,” in Proc. of the

2002 ACM SIGMOD international conference on Management of data,
June 2002.

[10] E. Damiani, S. De Capitani di Vimercati, S. Foresti, S. Jajodia, S. Para-
boschi, and P. Samarati, “Key management for multi-user encrypted
databases,” in Proc. of the ACM workshop on Storage security and

survivability, November 2005.

[11] P. Samarati and S. De Capitani di Vimercati, “Access control: Policies,
models, and mechanisms,” in Foundations of Security Analysis and

Design. Springer, 2001.

[12] S. Tu, M. Kaashoek, S. Madden, and N. Zeldovich, “Processing ana-
lytical queries over encrypted data,” in Proc. of the 39th International

Conference on Very Large Data Bases, August 2013.

[13] L. Ferretti, F. Pierazzi, M. Colajannni, and M. Marchetti, “Security and
confidentiality solutions for public cloud database services,” in Proc.

of the 7th International Conference on Emerging Security Information,

Systems and Technologies, August 2013.

[14] J. Crampton, K. Martin, and P. Wild, “On key assignment for hierarchi-
cal access control,” in 19th Computer Security Foundations Workshop.
IEEE, July 2006.

[15] M. J. Atallah, M. Blanton, N. Fazio, and K. B. Frikken, “Dynamic and
efficient key management for access hierarchies,” ACM Transactions on

Information and System Security (TISSEC), vol. 12, no. 3, 2009.

[16] S. Yu, C. Wang, K. Ren, and W. Lou, “Achieving secure, scalable, and
fine-grained data access control in cloud computing,” in Proc. of the

IEEE INFOCOM, March 2010.

[17] A. J. Feldman, W. P. Zeller, M. J. Freedman, and E. W. Felten, “Sporc:
group collaboration using untrusted cloud resources,” in Proc. of the 9th

USENIX conference on Operating Systems Design and Implementation,
October 2010.

224722

