
Supporting Security and Consistency

for Cloud Database

Luca Ferretti, Michele Colajanni, and Mirco Marchetti

Department of Information Engineering
University of Modena and Reggio Emilia

{luca.ferretti,michele.colajanni,mirco.marchetti}@unimore.it

Abstract. Typical Cloud database services guarantee high availability
and scalability, but they rise many concerns about data confidential-
ity. Combining encryption with SQL operations is a promising approach
although it is characterized by many open issues. Existing proposals,
which are based on some trusted intermediate server, limit availabil-
ity and scalability of original cloud database services. We propose an
alternative architecture that avoids any intermediary component, thus
achieving availability and scalability comparable to that of unencrypted
cloud database services. Moreover, our proposal guarantees data con-
sistency in scenarios in which independent clients concurrently execute
SQL queries, and the structure of the database can be modified.

1 Introduction

Cloud-based solutions for database services are now considered as an appealing
alternative thanks to their scalability and availability attributes. Nevertheless,
outsourcing critical data to untrusted cloud providers still poses many security
concerns [1, 9]. One interesting research goal is to allow customers to leverage
cloud infrastructures while guaranteeing data confidentiality by avoiding that
cloud providers may access customer data.

In the so called database-as-a-service (DBaaS) model [7] it is impossible to
guarantee confidentiality by naively encrypting customer data because tradi-
tional encryption schemes prevent the execution of SQL queries through a DBMS
engine.

Previous works [8, 13] addressed this issue through encryption schemes that
allow the execution of SQL queries over encrypted data. These architectures
are based on a trusted intermediate proxy, that accesses the database on be-
half of the clients. This design choice is suitable to web clients that access the
DBMS through other intermediate servers [13], but the reliance on a trusted
proxy limits availability and scalability of the encrypted database. Hence, ex-
isting proxy-based architectures do not suit the cloud database context, where
possibly distributed clients can access the remote DBMS.

This paper proposes a novel architecture that allows cloud customers to lever-
age untrusted DBaaS with the guarantee of data confidentiality. Unlike previous
solutions, our architecture does not rely on a trusted proxy, and allows multiple

Y. Xiang et al. (Eds.): CSS 2012, LNCS 7672, pp. 179–193, 2012.
c© Springer-Verlag Berlin Heidelberg 2012

180 L. Ferretti, M. Colajanni, and M. Marchetti

distributed clients to execute SQL queries concurrently and independently on
the same encrypted database. All the encryption and decryption operations are
carried out by a software module that is executed on each client machine. Our
design choice does not introduce any bottleneck and single point of failure be-
cause clients connect directly to the cloud database. Moreover, our architecture
guarantees the same availability, scalability and elasticity of the unencrypted
DBaaS and it is applicable to any commercial DBaaS because it does not re-
quire modifications to the database.

On the other hand, our support to concurrent execution of queries from in-
dependent clients requires novel solutions to guarantee data consistency. In this
paper, we identify several common usage scenarios and, for each scenario, we
analyze the consistency issues [2] that may arise from the execution of con-
current queries. We show that our solution guarantees consistency of customer
data in all these contexts through standard isolation mechanisms already imple-
mented in popular DBMS engines. We remark that this result cannot be achieved
naively in existing proxy-based solutions [8, 13] just by implementing multiple
proxies because their encryption management strategies are not designed for
being distributed among independent proxy instances that would require novel
synchronization algorithms and protocols.

The remaining part of this paper is structured as following. Section 2 dis-
cusses previous work in the field of secure cloud database services. Section 3
describes the novel architecture proposed in this paper. Section 4 discusses how
it is possible to guarantee data consistency in different usage contexts. Section 5
concludes the paper by summarizing its main contributions and future work.

2 Related Work

This paper proposes a novel architecture that is different from any previous work
in the field of security for cloud database services.

Cryptographic file systems and secure storage solutions represent the earliest
works to guarantee confidentiality and integrity of data outsourced to untrusted
cloud storage services. We do not detail the several papers and products in this
field (e.g., [6, 10, 11]) because they do not allow any computation on encrypted
data. Hence they cannot be applied to the context of cloud DBaaS.

Some DBMS engines offer the possibility of encrypting data at the file system
level through the so called Transparent Data Encryption (TDE) feature [3, 12].
This feature makes it possible to build a trusted DBMS over untrusted storage.
However, in the DBaaS context the DBMS engine is not trusted because it is
controlled by the cloud provider, hence the TDE approach is not applicable to
cloud database services.

An approach to preserve data confidentiality in scenarios where the DBMS is
not trusted is proposed in [5]. However it requires a modified DBMS engine that
is not compatible with commercial and open source DBMS software adopted by
cloud providers. On the other hand, the architecture we propose is compatible
with standard DBMS engines, and allows customers to build a secure cloud
database by leveraging cloud DBaaS readily available.

Supporting Security and Consistency for Cloud Database 181

The proposal in [4] uses encryption to control accesses to encrypted data
stored in a cloud database. This solution is not applicable to usage contexts in
which the structure of the database changes, and does not support concurrent
accesses from multiple clients possibly distributed on a geographical scale.

Our proposal is related to [8] and [13] that preserve data confidentiality in
an untrusted DBMS through encryption techniques that allow the execution of
SQL queries over encrypted data and are compatible with common DBMS en-
gines. These architectures are based on an intermediate and trusted proxy that
mediates all the interactions between clients and the untrusted DBMS server.
The reliance on a trusted proxy that characterizes both [8] and [13] facilitates
the implementation of a secure DBaaS, but causes several drawbacks. A detailed
comparison between the proxy-less architecture proposed in this paper and pre-
vious architectures based on a trusted proxy is in Section 3.

The architecture we propose moves away from existing solutions because it
allows multiple and independent clients to connect directly to the untrusted
cloud DBaaS without any intermediate server. To the best of our knowledge this
is the first paper that identifies consistency issues related to concurrent execution
of queries over encrypted data and to propose viable solutions for different usage
contexts, including data manipulation, modification to the database structure,
and data re-encryption.

3 Architecture Design

This paper proposes a novel architecture that allows customers to use cloud
DBaaS while preserving confidentiality of outsourced data. In particular, we
aim to:

– maintain the benefits of cloud solutions in terms of availability, scalability
and elasticity;

– support direct access from multiple clients, possibly distributed on a geo-
graphical scale;

– allow concurrent execution of SQL operations including those modifying data
and the structure of the database.

The architecture proposed in this paper guarantees data confidentiality together
with the ability to execute SQL operations over customer data by using SQL-
aware encryptions schemes similar to those already proposed in [8, 13]. Regard-
less of the particular encryption algorithm used to cipher customer data, all the
solutions based on cryptography depend on metadata. Metadata consist of infor-
mation required to encrypt and decrypt customer data and to translate plaintext
SQL statements to SQL statements over encrypted data. Hence, guaranteeing
metadata confidentiality is as critical as guaranteeing confidentiality of customer
data in the cloud.

We investigate three types of architectures:

182 L. Ferretti, M. Colajanni, and M. Marchetti

Fig. 1. A proxy-based architecture

– proxy-based architectures, proposed in [8, 13];
– proxy-less architectures that store metadata in the clients, proposed in [4];
– proxy-less architectures that store metadata in the cloud database, proposed

in this paper.

The most popular solutions [8, 13] for the confidentiality of data outsourced to
untrusted database propose a proxy-based architecture, that is represented in
Figure 1.

Clients access the database by issuing unmodified SQL queries to the proxy
through a standard database connector. The proxy executes the encryption en-
gine, that is the module responsible of applying encryption strategies on cus-
tomer data, and manages all metadata. The cloud database stores only encrypted
customer data, hence the cloud provider cannot access plaintext customer data
nor metadata that are required to decrypt encrypted customer data.

These proxy-based architectures do not satisfy our design requirements be-
cause the proxy is a bottleneck and a single-point-of-failure that limits avail-
ability, scalability and elasticity of the cloud DBaaS. Since the proxy must be
trusted, it cannot be outsourced to the cloud and has to be deployed and main-
tained locally. Moreover, proxy-based architectures cannot scale trivially by in-
creasing the number of proxies. Such a naive solution would imply the replication
of metadata among all the proxies, but this would require synchronization al-
gorithms and protocols to guarantee consistency among all the proxies that are
not considered in [8, 13].

A different approach proposed in [4] is shown in Figure 2. Here, the architec-
ture does not use an intermediate proxy and metadata are stored in the clients.
Since clients connect directly to the cloud database, this architecture achieves
availability, scalability and elasticity comparable to those of the original DBaaS.
However, each client has its own encryption engine and manages a local copy
of metadata. Hence, this solution can represent a sub-case of the proxy-based
architecture, in which a different proxy is deployed within each client. As a conse-
quence, a similar architecture for cloud accesses would suffer from the same con-
sistency issues of proxy-based architectures. Guaranteeing metadata consistency

Supporting Security and Consistency for Cloud Database 183

Fig. 2. A proxy-less architecture with metadata in the clients

in the face of concurrent query execution would require novel synchronization
algorithms and protocols among all the clients.

The novel proxy-less architecture represented in Figure 3 is proposed as a
solution to meet all the design requirements outlined at the beginning of this
section. The main idea is to move metadata to the cloud database, while the
encryption engine is executed by each client. Since metadata are not shared
among clients there is no need of synchronization mechanisms. Client machines
execute a client software component that allows a user to connect and issue
queries directly to the cloud DBaaS. This component retrieves the necessary
metadata from the untrusted database through SQL statements and makes them
available to the encryption engine. Multiple clients can access the untrusted cloud
database independently, with the guarantee of the same level of availability,
scalability and elasticity of cloud-based services.

The proposed proxy-less architecture overcomes the main drawbacks of proxy-
based solutions, however it introduces new issues with respect to metadata se-
curity and data consistency. Previous proposals solve metadata security issues
by storing and managing them on trusted components. Since they do not take
into account the concurrent management of metadata by multiple components,
they do not address any consistency issues related to data and metadata.

Our proposal guarantees security of metadata when at rest, in motion and
in use by encrypting metadata stored in the cloud. Only clients that know the
encryption key can decrypt metadata. Therefore, only these clients can access
data that are stored in an encrypted form in the cloud DBaaS. The proposed
architecture does not limit the applicability of any well-known system for key
distribution, ranging from simple pre-shared key to the use of dedicated authen-
tication servers. Describing the deployment of a specific system is out of the
scope of this paper, even because this choice does not influence our proposal.

In the proposed architecture the plaintext database is transformed into an
encrypted database by translating each plaintext table into a corresponding en-
crypted table. Each encrypted table is associated with a set of metadata that

184 L. Ferretti, M. Colajanni, and M. Marchetti

Fig. 3. The novel proxy-less architecture with encrypted metadata in the cloud

contains all management information required to encrypt and decrypt data be-
longing to that table. Metadata associated with different tables are independent.

We discuss data consistency using the example represented in Figure 4, where
we consider a database composed by two tables T 1 and T 2, that are stored
encrypted in the two corresponding tables T 1enc and T 2enc. Each table is asso-
ciated with a set of metadata, respectively M1 and M2, that are independent of
each other. All metadata are encrypted and stored in the database as M1enc and
M2enc. In this context, let us consider that clients A, B and C are concurrently
accessing the database:

– client A executes queries on tables T 1 and T 2. Hence, it reads M1enc and
M2enc, decrypts them and maintains temporary local versions M1temp and
M2temp;

– client B executes queries on table T 2, hence it retrievesM2enc and maintains
M2temp;

– client C executes queries on table T 1, hence it retrievesM1enc and maintains
M1temp.

Clients B and C access the database independently from each other, since they
handle independent metadata. Hence, they do not cause any consistency issues.
This design choice makes it possible to avoid conflicts when modifications on
metadata associated with different tables occur. However, client A accesses both
M1enc andM2enc, and modifications to any of them can cause consistency issues
with respect to temporary versions of clients C and B. In the proposed design,
concurrent accesses on the same table can still cause consistency issues depend-
ing on the types of SQL queries that are concurrently executed. Consistency
issues caused by concurrent modifications and related solutions are discussed in
Section 4.

Supporting Security and Consistency for Cloud Database 185

Fig. 4. Metadata structure

4 Concurrent Operation Management

The support to concurrent execution of SQL statements issued by multiple in-
dependent (possibly geographically distributed) clients is one of the most im-
portant benefits with respect to state-of-the-art solutions that require clients to
issue queries to database through an intermediate proxy. Our architecture must
guarantee consistency among encrypted customer data and encrypted metadata,
because corrupted or out-of-date metadata would prevent clients from decoding
encrypted customer data with permanent data loss consequences. In such a way,
clients can transform plaintext SQL statements into SQL operations that lever-
age transactions and isolation mechanisms provided by any relational database
engine and cloud DBaaS.

Problems and solutions depend on the use of the database and on related
types of queries. We present consistency issues and adopted solutions in relation
to four contexts:

– Data manipulation;
– Structure modifications;
– Data re-encryption;
– Unrestricted operations.

4.1 Data Manipulation

In the Data Manipulation context clients can read and write encrypted customer
data stored in the untrusted cloud database through the execution of SELECT,
INSERT, DELETE and UPDATE commands. This set of SQL operations is indi-
cated by the DML acronym. In this scenario, clients cannot modify the structure
of the database by creating new tables or altering or dropping existing tables.
We assume tables are created by the database administrator during a set-up
period. Since only one client can access the cloud database while tables are be-
ing created, no concurrency issues arise here because multiple and independent
clients can access the cloud database only after all tables have been created.

186 L. Ferretti, M. Colajanni, and M. Marchetti

Plaintext SQL commands issued by users are translated by clients into queries
that operate over encrypted customer data. The client analyzes plaintext SQL
commands to identify which plaintext tables are involved. Then, it issues a SE-
LECT query to retrieve the metadata associated with the corresponding en-
crypted tables. A client generates exactly one translated SQL command for each
plaintext SQL command issued by the users.

In this context, there are no consistency issues related to metadata man-
agement because metadata never change. However, multiple clients executing
concurrent read and write commands over the same data set can lead to inconsis-
tencies over customer data. These issues can be addressed by leveraging standard
concurrency isolation mechanisms provided by the DBMS server used to provi-
sion the cloud database service. Each user can enclose several SQL statements
within a transaction by issuing BEGIN, COMMIT and ABORT commands. In
this context, clients forward these commands to the cloud database without
any modifications. Hence the cloud database executes concurrent transactions
of translated queries in the same way as a traditional cloud DBaaS executes con-
current transactions of plaintext SQL commands. Consistency guarantees derive
from the isolation level chosen by the database administrator among those imple-
mented by the database, and are not influenced by the encryption and decryption
operations.

4.2 Structure Modifications

A popular context that has not been considered by previous proposals about
secure cloud databases is the possibility of modifying the structure of the da-
tabase. Our architecture supports the execution of CREATE, DROP and DML
SQL commands. Unlike the previous scenario, in this context database meta-
data can change, hence clients cannot rely on a cached copy of metadata. Our
architecture requires clients to translate each SQL command into a database
transaction containing:

– the SQL queries necessary to retrieve the up-to-date metadata;
– the translated SQL commands that correspond to the original SQL com-

mand.

Each plaintext SQL command executed in unencrypted databases is an atomic
operation. However, we translate each atomic command into a sequence of mul-
tiple commands enclosed in a transaction. Hence, consistency is guaranteed by
choosing a sufficient transaction isolation level among those offered by the cloud
database.

If the isolation level is not sufficient, consistency issues may arise from the
execution of operations belonging to different but concurrent transactions. If con-
current transactions operate just on encrypted customer data, metadata are not
modified and we return to the data manipulation context analyzed in Section 4.1,
in which the database administrator can choose the isolation level among those
provided by the DBMS. On the other hand, consistency issues may arise when

Supporting Security and Consistency for Cloud Database 187

a concurrent transaction contains commands that modify metadata. Among the
considered SQL commands, only CREATE and DROP operations modify meta-
data, hence consistency issues may arise if concurrent executions of the following
commands occur:

– DROP and DML;
– CREATE and DML;
– any concurrent CREATE and DROP.

We analyze these contexts by using the notation in Table 1, that is similar to
that proposed in [2].

Table 1. Notation for transactions and SQL queries

Bt BEGIN operation of transaction t

Ct COMMIT operation of transaction t

At ABORT operation of transaction t

Rt[Tenc, Uenc] Read (SELECT) operation on tables Tenc,Uenc in trans-
action t

Wt[Tenc, Uenc] Write (INSERT, UPDATE, DELETE) operation on ta-
bles Tenc,Uenc in transaction t

SMt[Tenc] Structure Modification (CREATE or DROP) operation
on table Tenc in transaction t

MR
t [T] Read operation on metadata related to table T in trans-

action t

MW
t [T] Write operation on metadata related to table T in trans-

action t

DROP and DML. The database may generate errors if the DML command
is executed after the table has been dropped. For example, we consider the
following two transaction histories.

The former represents the execution of a table DROP, while a data read is
being executed on the same table:

B1B2M
R
1 [T]MR

2 [T]MW
2 [T]SM2[Tenc]C2R1[Tenc]A1 (1)

Transaction 1 obtains metadata that are necessary to create the translated read
command R1[Tenc] and to decrypt its result. The DROP command (SM2[Tenc])
issued by transaction 2 is executed before the translated data read issued by
transaction 1. The table Tenc does not exist anymore and the read command
issued by transaction 1 fails.

Now we consider the concurrent execution of a DROP and a write command:

B1B2M
R
1 [T]MR

2 [T]MW
2 [T]SM2[Tenc]C2W1[Tenc]A1 (2)

In this context, the write command executed by transaction 1 fails because Tenc

was deleted by the DROP command (SM2[Tenc]).

188 L. Ferretti, M. Colajanni, and M. Marchetti

CREATE and DML. The database may generate errors if the DML command
is executed before the creation of the table. As an example, we consider the
following two transaction histories.

The former represents the execution of a table CREATE, while a data read
is being executed on the same table:

B1B2M
R
2 [T]MW

2 [T]MR
1 [T]R1[Tenc]A1SM2[Tenc]C2 (3)

The read command executed by transaction 1 fails because Tenc was not yet
created by the CREATE (SM2[Tenc]).

Now we consider the concurrent execution of a CREATE and a write com-
mand:

B1B2M
R
2 [T]MW

2 [T]MR
1 [T]W1[Tenc]A1SM2[Tenc]C2 (4)

The write command executed by transaction 1 fails because Tenc was not yet
created by the CREATE (SM2[Tenc]).

In all these cases, the client software handles the error notification generated
by the remote database. We highlight that none of the considered errors cause
consistency issues to the encrypted customer data or metadata.

Any concurrent CREATE and DROP. The database may generate errors
if two commands that modify the structure of the database are executed con-
currently. For example, if two CREATE (DROP) commands insist on the same
table, then an error is generated as soon as the second transaction insert (delete)
the related metadata, as represented by the following history case.

B1B2M
R
1 [T]MR

2 [T]MW
1 [T]MW

2 [T]A2SM1[Tenc]C1 (5)

If a CREATE and a DROP are executed concurrently over the same table, an
error can be generated because the DROP is executed on a table that does not
exist yet, or because a client creates an already existing table. The following
history represents a failed CREATE (DROP) command by the transaction 2
executed before the other DROP (CREATE) command by the transaction 1.

B1B2M
R
1 [T]MW

1 [T]MR
2 [T]MW

2 [T]SM2[Tenc]A2SM1[Tenc]C1 (6)

Since the transaction 2 aborts, its previous modification on related metadata
(MW

2 [T]) are rolled back (A2).
In this context the use of implicit transactions is enough to guarantee data

consistency, hence the database administrator can freely choose the preferred
isolation level among those provided by the database.

4.3 Data Re-encryption

The proposed proxy-less architecture guarantees data confidentiality by inde-
pendently encrypting tables. In the data re-encryption context, we analyze the

Supporting Security and Consistency for Cloud Database 189

consistency issues that arise when clients re-encrypt data stored in the cloud
database. This occurs when it is required to change encryption keys, or to use
a different encryption algorithm to guarantee confidentiality. Our architecture
handles both cases through the execution of the following transaction:

BMR[T]MW [T]R[Tenc]W [Tenc]C (7)

As an example we consider a re-encryption command that modifies the encryp-
tion key that is used to encrypt customer data stored in the table Tenc. The
client first reads the current metadata (MR[T]) associated with the encrypted
customer data to retrieve all the information related to their encryption policy,
including current encryption keys. Then, it updates the metadata (MW [T]) ac-
cording to the new encryption policy, by changing the encryption keys. Hence,
the client needs to read all the data (R[Tenc]), to decrypt them with the old en-
cryption keys, to encrypt them with the new encryption keys and to write new
data to the encrypted table (W [Tenc]). Decryption and encryption operations
have to be performed locally by a trusted client because the client never exposes
plaintext data to the untrusted cloud database.

Consistency issues may arise in the following cases:

– concurrent execution of a re-encryption and data read;
– concurrent execution of a re-encryption and data write;
– concurrent execution of multiple re-encryptions.

Re-encryption and data read. The database may return data that are not
accessible by the client, if a data read command is executed concurrently to a
re-encryption command. We consider the case in which a data read command
requires a set of data whose encryption key is being modified by a concurrent
re-encryption command, as represented by the following transaction history:

B1B2M
R
1 [T]MR

2 [T]MW
2 [T]R2[Tenc]W2[Tenc]C2R1[Tenc]C1 (8)

In this example, transaction 1 reads metadata (MR
1 [T]). Then transaction 2

executes sequentially all operations included in the re-encryption command as
defined in (7). Finally, transaction 1 reads the set of data (R1[Tenc]). However, it
obtains data that are encrypted through a new encryption key, hence it cannot
decrypt them. This concurrency issue is an instance of the well known read skew
anomaly defined in [2].

Re-encryption and data write. Inconsistent data may be written if the data
write command and a re-encryption command are executed concurrently. We
consider the case in which a data write command stores a set of data whose
encryption key is being modified by a concurrent re-encryption command. This
scenario is represented by the following transaction history.

B1B2M
R
1 [T]MR

2 [T]MW
2 [T]R2[Tenc]W2[Tenc]C2W1[Tenc]C1 (9)

In this example, transaction 1 reads metadata (MR
1 [T]), then transaction 2 ex-

ecutes sequentially all operations included in the re-encryption command as

190 L. Ferretti, M. Colajanni, and M. Marchetti

defined in (7). Finally, transaction 1 writes the set of data (W1[Tenc]). However,
it writes data that are encrypted by means of the old encryption key that is not
stored anymore in metadata related to table Tenc. As a consequence, these data
are inaccessible.

The consistency anomaly that affects the above history may differ on the basis
of the considered write command. We distinguish two main cases: UPDATE or
DELETE commands, and INSERT commands.

In the case of an UPDATE or a DELETE command the data write command
(W1[Tenc]) insists on a set of data also interested by the re-encryption com-
mand (W2[Tenc]). Hence, the concurrency issue is an instance of the lost update
phenomenon, as defined in [2].

In the INSERT case the data write command insists on a set of data that
did not exist when the re-encryption command was executed, but that is in-
cluded in the predicate of the update sequence of the re-encryption command
(R2[Tenc]W2[Tenc]). This concurrency issue is an instance of the phantom anomaly
as defined in [2].

We highlight that an alternative example of the above transaction history is
to swap the order of the last writes operations, as represented by the following
history:

B1B2M
R
1 [T]MR

2 [T]MW
2 [T]R2[Tenc]W1[Tenc]C1W2[Tenc]C2 (10)

In the case of an UPDATE or DELETE command, the database is still consistent
and completely accessible. However, newly written data have been lost, due to
the lost update phenomenon.

Multiple re-encryptions. We consider the case in which two fields of the same
table are re-encrypted, as represented in the following history:

B1B2M
R
1 [T]MR

2 [T]MW
1 [T]MW

2 [T]

R1[Tenc]R2[Tenc]W1[Tenc]C1W2[Tenc]C2 (11)

Since both transactions modify the same metadata (MW
1 [T] MW

2 [T]), the exe-
cution of concurrent re-encryptions may cause a lost update anomaly.

Finally, we can define the consistency requirements of the re-encryption con-
text. The DBMS isolation level must avoid read skew, lost update and phantom
concurrency anomalies. Since lost update is a sub-case of a read skew, as discussed
in [2], it is possible to trace back the two anomalies to only read skew.

The proposed proxy-less architecture guarantee data consistency by leveraging
the appropriate isolation level. The read skew anomaly is avoided by the snapshot
isolation level, that does not guarantee consistency with respect to the phantom
anomaly. Besides the highest ANSI serializable, no standard isolation level with
similar guarantees have been defined yet. However, several well-known DBMS
engines extend snapshot isolation through predicate locking mechanisms, thus
avoiding also phantom anomalies. We call the set of snapshot isolation levels
that also avoid phantom anomalies as snapshot isolation plus.

Supporting Security and Consistency for Cloud Database 191

If the required isolation level is set on the cloud database, the proposed proxy-
less architecture lets several clients execute DML commands concurrently while
one client executes re-encryption operations on a table with no consistency is-
sues. An isolation level that suits our requirements with low overhead has been
proposed in [14].

4.4 Unrestricted Operations

This context does not pose any limitation to the nature of the commands that can
be issued concurrently by clients to the cloud database. It is possible to execute
any data definition language (DDL) command, as well as DML commands, and
re-encryptions that modify the database structure and encryption policies. Since
the behavior of DDL is not formalized in any standard, each DBMS implements
different DDL locking mechanisms and DDL transaction policies. Hence, identify
one isolation level that does not depend on the database and that guarantee data
consistency. A possible solution is to impose the isolation level serializable [2]
together with the support to rollback of DDL operations that are included in
the transactions.

If the constraints are satisfied, the proposed proxy-less architecture guarantees
data consistency in any execution context. Since these constraints are not met
by all the DBMS engines, another solution is to explicitly handle concurrency
issues at the application level. This problem is out of the scope of this paper
because it would depend on the guarantees provided by the remote database.

4.5 Discussion

In scenarios characterized by a static database structure (as described in Sec-
tion 4.1) the proposed architecture allows multiple, independent and possibly
geographically distributed clients to issue concurrent SQL commands to read,
write and update data stored in an encrypted cloud database. It is worth to
observe that:

– in the data manipulation context, that is the one taken into account by
previous proposals [4, 8, 13], negligible overhead is generated. Clients can
read metadata only and cache them locally without consistency issues;

– in all contexts the proposed architecture does not introduce any new consis-
tency issue with respect to unencrypted databases;

– any underlying mechanisms implementing database operations are transpar-
ent to the users.

Some inevitable overhead is caused by the computational cost related to data
encryption and decryption operations. However, this cost is inherent in any en-
crypted database solution that does not want to expose plaintext data to the
cloud provider.

We highlight also that the novel proxy-less architecture is the first solution
that allows concurrent and direct accesses to the cloud database and that sup-
ports even modifications to the database structure. Depending on the type of

192 L. Ferretti, M. Colajanni, and M. Marchetti

modification, higher isolation levels are required with consequential overheads. If
we have to support operations such as CREATE and DROP tables (Section 4.2)
or data re-encryption (Section 4.3), then the proposed solution introduces some
additional operations to implement implicit transactions.

5 Conclusions

This paper proposes a novel solution that guarantees confidentiality of data
saved into cloud databases that are untrusted by definition. All data outsourced
to the cloud provider are encrypted through cryptographic algorithms that allow
the execution of standard SQL queries on encrypted data. This is the first solu-
tion that allows direct, independent and concurrent access to the cloud database
and that supports even changes to the database structure. It does not rely on
a trusted proxy that represents a single point of failure and a system bottle-
neck, and that limits the availability and scalability of cloud database services.
Concurrent read and write operations that do not modify the structure of the
encrypted database are supported with minimal overhead. More dynamic sce-
narios characterized by (concurrent) modifications of the database structure are
supported but at the price of higher overhead and stricter transaction isolation
levels. This should be considered an initial paper on a long-term research that
will include implementation on different cloud platforms, experimentations, and
evaluation of performance and overheads.

Acknowledgments. The authors acknowledge the support of MIUR-PRIN
project DOTS-LCCI Dependable Off-the-Shelf based middleware system for
Large-scale Complex Critical Infrastructures.

References

1. Armbrust, M., Fox, A., Griffith, R., Joseph, A., Katz, R., Konwinski, A., Lee, G.,
Patterson, D., Rabkin, A., Stoica, I., et al.: A view of cloud computing. Commu-
nications of the ACM 53(4), 50–58 (2010)

2. Berenson, H., Bernstein, P., Gray, J., Melton, J., O’Neil, E., O’Neil, P.: A critique
of ansi sql isolation levels. SIGMOD Rec. 24(2), 1–10 (1995)

3. Cattaneo, G., Catuogno, L., Sorbo, A.D., Persiano, P.: The design and imple-
mentation of a transparent cryptographic file system for unix. In: Proceedings of
the FREENIX Track: 2001 USENIX Annual Technical Conference, pp. 199–212.
USENIX Association, Berkeley (2001)

4. Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., Samarati, P.: Metadata Management in Outsourced Encrypted Databases. In:
Jonker, W., Petković, M. (eds.) SDM 2005. LNCS, vol. 3674, pp. 16–32. Springer,
Heidelberg (2005)

5. Damiani, E., De Capitani di Vimercati, S., Jajodia, S., Paraboschi, S., Samarati,
P.: Balancing confidentiality and efficiency in untrusted relational dbmss. In: Pro-
ceedings of the 10th ACM Conference on Computer and Communications Security,
CCS 2003, pp. 93–102. ACM, New York (2003)

Supporting Security and Consistency for Cloud Database 193

6. Feldman, A., Zeller, W., Freedman, M., Felten, E.: Sporc: Group collaboration
using untrusted cloud resources. OSDI (October 2010)

7. Hacigümüş, H., Iyer, B., Mehrotra, S.: Providing database as a service. In: Proceed-
ings of the 18th International Conference on Data Engineering, pp. 29–38 (2002)

8. Hacigümüş, H., Iyer, B., Li, C., Mehrotra, S.: Executing sql over encrypted data in
the database-service-provider model. In: Proceedings of the 2002 ACM SIGMOD
International Conference on Management of Data, SIGMOD 2002, pp. 216–227.
ACM, New York (2002)

9. Jansen, W., Grance, T.: Guidelines on security and privacy in public cloud com-
puting. NIST Special Publication 800–144(2011)

10. Li, J., Krohn, M., Mazières, D., Shasha, D.: Secure untrusted data repository
(sundr). In: Proceedings of the 6th Symposium on Operating Systems Design and
Implementation, pp. 91–106 (2004)

11. Mahajan, P., Setty, S., Lee, S., Clement, A., Alvisi, L., Dahlin, M., Walfish, M.:
Depot: Cloud storage with minimal trust. ACM Trans. Comput. Syst. 29(4), 12:1–
12:38 (2011)

12. Oracle corporation: Oracle advanced security (October 2012),
http://www.oracle.com/technetwork/database/options/advanced-security

13. Popa, R.A., Redfield, C.M.S., Zeldovich, N., Balakrishnan, H.: CryptDB: protect-
ing confidentiality with encrypted query processing. In: Proceedings of the Twenty-
Third ACM Symposium on Operating Systems Principles, SOSP 2011, pp. 85–100.
ACM, New York (2011)

14. Yabandeh, M., Gómez Ferro, D.: A critique of snapshot isolation. In: Proceedings
of the 7th ACM European Conference on Computer Systems, pp. 155–168. ACM
(2012)

http://www.oracle.com/technetwork/database/options/advanced-security

	Supporting Security and Consistency for Cloud Database
	Introduction
	Related Work
	Architecture Design
	Concurrent Operation Management
	Data Manipulation
	Structure Modifications
	Data Re-encryption
	Unrestricted Operations
	Discussion

	Conclusions

