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Abstract—A critical task in the management of Infrastructure
as a Service cloud data centers is the placement of Virtual Ma-
chines (VMs) over the infrastructure of physical nodes. However,
as the size of data centers grows, finding optimal VM placement
solutions becomes challenging. The typical approach is to rely on
heuristics that improve VM placement scalability by (partially)
discarding information about the VM behavior. An alternative
approach providing encouraging results, namely Class-Based
Placement (CBP), has been proposed recently. CBP considers
VMs divided in classes with similar behavior in terms of resource
usage. This technique can obtain high quality placement because
it considers a detailed model of VM behavior on a per-class base.
At the same time, scalability is achieved by considering a small-
scale VM placement problem that is replicated as a building
block for the whole data center. However, a critical parameter
of CBP technique is the number (and size) of building blocks to
consider. Many small building blocks may reduce the overall VM
placement solution quality due to fragmentation of the physical
node resources over blocks. On the other hand, few large building
blocks may become computationally expensive to handle and
may be unsolvable due to the problem complexity. This paper
addresses this problem analyzing the impact of block size on the
performance of the VM class-based placement. Furthermore, we
propose an algorithm to estimate the best number of blocks. Our
proposal is validated through experimental results based on a
real cloud computing data center.

I. INTRODUCTION

The success of cloud computing is testified by the constant
growth of cloud-based infrastructures. Demands in terms of
storage and processing power for the cloud are expected to
increase by two orders of magnitude in fifteen years [1].
Indeed, more and more applications are deployed over Infras-
tructure as a Service (IaaS) cloud infrastructures to cope with
highly variable workloads following a on-demand, pay-as-you-
go philosophy. However, the success of cloud computing, re-
sulting in more and larger data-centers, creates new challenges
at the level of infrastructure monitoring and management.
An ever-increasing number of Virtual Machines (VMs) with
variable demands in term of system resources must be placed
over a large number of physical nodes. Monitoring VMs to
understand the dynamics of resource demands represents a
challenging problem when thousands of VMs are involved.
The VM placement problem is an even more critical issue
because it involves the solution of a bin-packing problem
encompassing the whole data center. Ensuring a scalable and
effective solution for the VM placement problem is currently
a major challenge for the cloud computing industry.

State of the art approaches for the VMs placement problem
typically fail to consider the actual behavior of VMs in terms
of resource demands (i.e., they consider all VMs of the same
nominal size equal to each other [2], [3]). When the actual
behavior of each VM is taken into account, the placement prob-
lem becomes so complex that it must be solved using highly
simplified heuristics, such as the First Fit Decreasing (FFD)
algorithm [4]. In both cases the result is a low quality solutions
of the VM placement problem that lead to a waste of cloud data
center resources. Only recently, the authors proposed a novel
approach, namely Class-Based Placement (CBP), that exploits
similar behavior of classes of VMs (i.e., VMs hosting the same
software component of the same application) to increase the
scalability of the VM placement [5]. Instead of considering
a single bin-packing problem for VM placement, the CBP
approach splits the problem into small building blocks that are
easy to solve and can be composed to reach a global solution.
However, while the initial proposal of CBP can reduce the
computational demand and achieve higher quality in the VM
placement solution compared to existing alternatives, the study
in [5] does not provide a complete analysis of the parameters
that may affect its performance. In particular, the study does
not take into account the impact of the building block size
on the quality of the final solution. The trade-off should be
clear: on one hand, a large number of small building blocks
can obtain a benefit in terms of scalability at the expenses
of a less efficient placement due to unused spare capacity
within each block (capacity fragmentation); on the other hand,
larger blocks tend to avoid fragmentation effects, but the
underlying placement problem is much more demanding from
a computational point of view.

The contribution of this paper is twofold: 1) we perform
an in-depth analysis of the impact of the number of building
blocks on the quality of the VM placement solutions; 2)
we propose an algorithm to automatically determine the best
number of blocks in order to improve the quality of the VMs
placement.

We apply our proposal to a problem based on a real data
center to evaluate the impact of the parameters of the CBP
technique on the overall performance. Specifically we show
how the size of the block affects the quality of the VM
placement and we compare the solution quality achieved by
the early proposal of CPB [5] with the new algorithm for block
size estimation.

Our results demonstrate that the new proposal for block
size estimation outperforms the previous algorithm, achieving



a solution quality very close to the lower bound of the VM
placement problem.

The remainder of this paper is organized as follows.
Section II describes the Class-Based Placement and provides
a model to determine an appropriate number of blocks. Sec-
tion III describes the results of the technique evaluation. Fi-
nally, Section IV concludes the paper with some final remarks
and outlines open research problems.

II. VM PLACEMENT PROBLEM

We now provide a formal model for the VM placement
problem. Specifically, we first outline the Class-based place-
ment technique proposed in [5], that is reference scenario for
our proposal. Next, we discuss a parameter that affects the
performance of the CBP, that is the number of the small-
scale placement problems that are the building blocks of the
CBP technique. In particular, we outline the pros and cons of
having few large problems vs. having many small problems.
Finally, we propose an algorithm to determine the best number
of building blocks for the placement problem.

A. Class-Based Placement

The application of our proposal to a cloud data center is
based on the following two assumptions. First, we consider that
the VMs placement is a periodic task that aims at mapping
VMs over the physical nodes of the infrastructure, with the
goal of minimizing the number of used nodes while satisfying
the requirements of each VM in terms of resource demand.
Second, we assume to be able to group VMs into classes
with similar behavior, where VMs belonging to the same class
exhibit similar resource requirements. The presence of classes
of VMs with similar behavior represents a common condition
that occurs every time an application is replicated over a
distributed architecture for scalability and availability [6]. Even
if the knowledge of replicated application deployment is not
directly available to IaaS cloud providers, we can exploit
proposals in literature that allow to cluster together VMs with
similar behavior [7], [8], [9].

The basic idea is to reduce the global bin packing problem
for VM placement, that operates on the whole data center, to a
smaller problem involving only few VMs for each class. The
reduced size of the problem allows us to solve to optimality the
VM placement considering a multi dimensional formulation
with a number of time intervals that would not be possible to
consider for the global problem; then, the obtained solution
can be replicated as a building block to determine the solution
for the global VM placement problem.

Figure 1 depicts the periodic VMs placement in a cloud
data center that adopts the proposed approach. We consider
as the input of our process a prediction of the future resource
demands for the next planning period. Resource demands are
expressed for each class of VMs (we present them as “F1”,
. . . , “FC” in Figure 1). We also consider to have a description
of the infrastructure (e.g, the nodes on which the VMs are to
be placed, marked with the letter “I”) and we expect as the
output a decision (letter “D”) indicating the placement of the
VMs over the physical nodes.

Let us consider a set M of VMs that have to be deployed on
a set N of physical nodes. We assume that the VMs are divided
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Fig. 1: Class-based VM placement technique

into a set C of classes, where all the VMs of a same class
present similar resource requirements. Let Mc be the set of
VMs belonging to class c∈C. For the sake of the bin packing
problem, we divide the next planning period into a set of time
intervals T that are considered for the VM placement. The
matrix R represents the resource requirements of the VMs over
multiple observation time intervals. Although the most general
version of the problem involves multiple resources of the VMs,
such as CPU, memory, network, and disk [10], [11], [12], we
limit our model to a single resource (CPU utilization), that
is a typical bottleneck resource for cloud infrastructures [13].
However, it is worth to note that the inclusion of multiple
resources in our model represents a straightforward extension.
Since VMs belonging to the same class are characterized by
similar resource demand, we can define the resource demand of
a generic VM belonging to class c (c∈C) for the time interval
t (t ∈ T) as Rc,t . Furthermore, Vn represents the available CPU
capacity on node n (n ∈ N).

The traditional approach to address the VM placement
problem is to solve a multi-dimensional bin packing prob-
lem (MBP). However, solving the global problem is likely
to become computationally infeasible for medium-large data
centers. To improve the scalability of the VM placement, a
possible solution is to simplify the bin packing problem, for
example by increasing the length of the time intervals con-
sidered for resource demand estimation: this means reducing
the cardinality of the set T and, consequently, the number
of constraints of the optimization problem. Unfortunately this
solution tends to reduce the quality of the solution, leading to
the use of more physical nodes with respect to the optimum [5].
An alternative solution is to exploit the Class-based placement
approach proposed in [5].

In Class-based placement, the global set of VMs is divided
in b B-blocks composed by the same number of VMs for each
class, while the remaining VMs form the E-block. A block
number estimator (shown in Figure 1) determines the number
of the B-blocks. For each class c∈C, each B-block contains a
set Bc ⊂Mc of VMs belonging to class c. The remaining set
of VMs Ec, that are not assigned to any B- block, is assigned
to the E-block.

Since all the VMs of a same class present similar resource
requirements, the placement solution computed for a single
B-block can be replicated for all the B-blocks. We can thus
formulate the optimization problem for the generic B-block as:



min ∑
n∈N

On (1)

subject to:

∑
n∈N

In,m = 1 ∀m ∈
⋃
c∈C

Bc (2)

∑
c∈C

∑
m∈Bc

Rc,t · In,m ≤Vn ·On ∀n ∈ N,∀t ∈ T (3)

In,m = {0,1} ∀n ∈ N,∀m ∈
⋃
c∈C

Bc (4)

On = {0,1} ∀n ∈ N (5)

Where On is a binary decision variable that discriminates if
a physical node n in the data center is on or off, In,m is a binary
decision variable that decides if VM m is allocated on node
n. Expression 1 is the objective function of the optimization
problem that aims to minimize the number of used nodes. Due
to the set of constraints 2, every VM is allocated exactly on one
physical node. The set of constraints 3 expresses the bound that
on each node the allocated VMs must not exceed the overall
capacity of the node for every considered time interval. Finally,
the sets of constraints 4 and 5 model the boolean nature of the
decision variables.

A similar optimization problem applies to the E-block
problem.

B. Block size estimation

We now focus on how VMs are assigned to the B-blocks
and to the E-block. To this aim, the parameter b plays a major
role, hence the selection of the right value for b is a critical
factor for the performance of the proposed CBP technique.
The impact of b over the consolidation process is twofold.
On one hand, as b is reduced, the size of the problem in
the B- and E-blocks increases. This may have a detrimental
effect on the solvability of the VM placement problem due
to the computational cost of the large optimization problems
for the B-blocks. On the other hand, as b grows, we tend
to have very small problems, where the amount of unused
resources of the nodes in each B-block becomes relevant. In
this case we observe a fragmentation effect that may reduce
the quality of the solution (the number of physical nodes used
is much higher than the optimum). The identification of the
best value of b must solve a trade-off between computational
cost and solution quality, ensuring that the splitting of the VM
placement problem is feasible.

To determine the best value for the b parameter, we follow
an iterative approach trying to distribute VMs between B-
blocks and E-block until a set of constraint is satisfied. This
is the task carried out by the block number estimation box in
Figure 1. We designate with b∗ the value of b identified by
our algorithm.

Let xc be the number of VMs belonging to class c (c ∈C)
that are in the B-block. Referring to the problem in Sec-
tion II-A, xc = |Bc|. In a similar way we define yc = |Ec|.

The values of xc and yc can be computed as:

xc = |Bc|=
⌊
|Mc|

b

⌋
∀c ∈ C (6)

yc = |Ec|= |Mc|%b ∀c ∈ C (7)

For each considered value of b we define the following
constraints:

∑
c∈C

xc ≥ ∑
c∈C

yc (8)

∑
c∈C

xc ≤ S (9)

xc ≥ 1 ∀c ∈ C (10)

Constraint 8 requires that the overall number of VMs for
the E-block is less or equal to the size of a B-block. This
constraint is motivated by the need to avoid a block splitting
where the B-block remains small and the E-block becomes a
huge and intractable problem. Constraint 9 places a maximum
size on the VMs in a B-block. This bound is important because,
in previous studies [5] we found that as the problem size grows,
the bin-packing problem becomes unmanageable and cannot
be solved. This observation motivates the upper bound on the
B-block size and provides an estimate for the threshold S: in
our experimental setup we will consider S = 300 that is the
threshold value found in [5]. It is worth to note that we do
not need to place a bound for the size of the E-block due to
constraint 8. Constraints 10 requires the B-block to contain at
least a VM for each class.

In our iterative approach, we start with a value of b=
⌈ |M|

S

⌉
.

This initial value descends from constraint 9: a lower value of b
would automatically violate this condition. If we find a solution
to the problem, then we have an acceptable block splitting for
the found value of b∗. Otherwise, we increment b and we try
again to solve the optimization problem until we find b∗. The
maximum possible value for b is L=min({|Mc|,∀c∈C}): any
higher value of b would violate the inequality in constraint 10.

III. EXPERIMENTAL RESULTS

In this section we start describing the setup of our ex-
periments, then we discuss the results regarding the proposed
placement technique, with a detailed analysis of the impact of
different values for the b parameter.

A. Experimental setup

We obtain an extensive dataset from a private cloud data
center. The set contains up to 1200 VMs traces for the
resource usage of Web/application/database servers and ERP
applications, where the VMs belongs to 44 different classes,
with each class containing from 8 to 50 VMs. We use our
traces as the future resource utilization for the VM placement
problem (see Figure 1). For our experiments we consider
the CPU resource, that is well-know to be the bottleneck
resource for this type of applications [13]. The resource usage
is measured in intervals of 5 minutes, that is a setup consistent
with other experiments in literature [14].



We consider multiple scenarios characterized by different
numbers of VMs to be placed on the physical nodes of the
virtualized data center. In particular, we consider a VMs set
size ranging from 400 to 1200 VMs. For each VM the CPU
utilization is in the range [0%-100%] with an average value
of 54%. For each physical node the CPU capacity is 800%,
meaning that each node can host 8 VMs with CPU utilization
of 100%. For each scenario, we compare different consoli-
dation models operating over a planning period of 24 hours.
The proposed Class-Based Placement (CBP) is solved with 288
five-minutes time intervals and is evaluated for different values
of the b parameter. When evaluating the traditional MBP model
we consider different setups where the length of the intervals
for resource requirements ranges from 5 minutes to 24 hours.
We also consider a First Fit Decreasing (FFD) heuristic [4]
that is used to solve very large problems [5]. The experiments
are run on 2.4 GHz, 16 cores Intel Xeon with 16 GB RAM,
using IBM ILOG CPLEX 12.6 as the optimizer solver1.

As a metric for the VMs placement quality, we consider
the number of physical nodes that are required for the allo-
cation [10], [15]. The number of nodes for each solution is
expressed with respect to an estimation of the optimal solution
for the considered scenario. The MBP model with five minute
time interval (MBP-5min) represents a lower bound for all the
feasible allocations, as this consolidation model exploits all the
available information to find an optimal solution. However, the
number of variables and constraints for this model increases
rapidly with the VMs set size, producing an optimization
problem instances whose computation takes extremely long
times or does not produce any feasible solution due to the
huge main memory requirements, that may finally cause the
solver to abort the optimization processing. For this reason,
we use the objective function value of the LP relaxation of
the MBP-5min consolidation model (1) as a lower bound for
the optimal number of physical nodes to use. In other words,
we relax the boolean nature of the decision variables, assuming
that parts of a VM can be assigned to different physical nodes.
This allocation is obviously not feasible from a technical point
of view but can be easily computed, hence we exploit it as a
convenient lower bound for any feasible allocation [10].

It is worth to note that for many problems the resolution
of the MPB consolidation models may take long times, such
as hours or days, even for a limited number of time intervals.
For that reason, we used a time limit of 30 minutes (1800
seconds) for each problem and considered the best integer
solution found as the solution of the placement problem, as
commonly done in similar research studies [10], [16].

B. Experimental results

In the first experiment we evaluate the impact of different
values of the b parameter, which represents the number of B-
blocks, on the solution quality of the proposed Class-based
placement technique. For each VMs set size, we force the b
parameter to range from 2 to the maximum allowed value L,
which is the cardinality of the smallest class. For each value of
b, we evaluate the number of VMs in B-blocks and E-blocks,
and the quality of the solutions in terms of VMs placement.
We achieve similar results across all the scenarios: for space

1www.ibm.com/software/commerce/optimization/cplex-optimizer/

reasons, we do not show all the results, but we discuss the
case of 1200 VMs as an example of the most interesting and
large scenario considered in our experiments.

Figure 2 shows the number of VMs in B- and E-blocks,
and the solution quality as b ranges from 2 to 10, which is
the cardinality of the smallest class in the 1200 VMs scenario.
The graph also shows the line corresponding to the threshold
S = 300 that we use to define the optimal value of b.
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Fig. 2: Evaluation of 1200 VMs set size

In the graph we observe that the number of VMs in the
B-blocks decreases as the number b of blocks increases. For
b equal to 2 and 3, the solver was not able to reach a feasible
integer solution within the 30 minutes limit (solution quality
= 0), confirming our assumption that the problem with more
than 300 VMs in a block is hardly solvable with constraints
of 5-minutes time intervals. We also observe that the best
solution is achieved for b = 4, that corresponds to the value of
b∗ identified by the algorithm described in Section II-B; the
number of required physical nodes slightly grows for higher
values of b. We recall that the solution quality is measured as
the number of physical nodes required for the allocation with
respect to the objective function value of the LP relaxation
of MBP (5-min). In other words, a solution quality of 110%
means that the allocation required 10% physical nodes more
with respect to the solution of the LP relaxation problem. It
is important to note that for this scenario, as for all the VMs
set sizes not reported here, the value b∗ corresponds to the
number of B-blocks the leads to the best quality solution for
the VM placement problem.

The second experiment compares the quality solutions
obtained by the proposed Class-Based Placement, exploiting
the automatic determination of the best b = b∗, with that
achieved by the same consolidation model using a number of
B-blocks equal to the cardinality of the smallest VM class
(L) (as proposed in [5]). We also consider as a term of
comparison the solution achieved by state-of-the-art solutions
based on Multiple Bin Packing (MBP) or FFD heuristic applied
to the global placement problem. Table I shows the solution
qualities for the considered consolidation models for each VM
set size. For the CBP consolidation models (first and second
columns) we report the considered b value. In the last column
of the table, along with the solution quality, we report the



state-of-the-art consolidation model that achieved the solution:
we observe that for very large scenarios (1200 VMs) only
the FFD heuristic is able to find a feasible integer solution,
while feasible solutions can be achieved by MBP models with
an increasing number of time intervals as the VM set size
decreases.

TABLE I: Solution quality [%]

Consolidation Models
VMs Set Class-Based State of the

Size b = b∗ b = L art solution
400 103.2 (b = 2) 112.9 (b = 8) 125.4 (MBP-1h)
500 104.5 (b = 2) 115.9 (b = 8) 120.3 (MBP-1h)
600 105.5 (b = 2) 111.1 (b = 8) 125.0 (MBP-12h)
700 106.6 (b = 3) 110.3 (b = 8) 131.8 (MBP-12h)
800 107.0 (b = 3) 114.1 (b = 10) 128.5 (MBP-12h)
900 105.1 (b = 3) 108.8 (b = 8) 131.2 (MBP-12h)
1000 104.5 (b = 3) 106.8 (b = 10) 127.3 (MBP-12h)
1100 107.7 (b = 4) 114.3 (b = 10) 133.1 (MBP-1d)
1200 105.5 (b = 4) 113.8 (b = 10) 131.2 (FFD)

The message from Table I is twofold. First, the proposed
algorithm for the determination of b∗ allows to obtain signifi-
cant improvements in the solution quality achieved by the CBP
model. Indeed, the quality of the solutions in the first column
ranges from 103.2% to 107.7%, while for b = L the quality
ranges from 106.8% to 115.9%. Second, we confirm that even
in the latter case, CBP significantly outperforms the state-of-
the-art solutions, that use at least 20% more nodes compared
to the LP relaxation of the problem.

IV. CONCLUSIONS

In this paper we addressed the problem of parameter
tuning in the Class-based placement technique. Specifically,
we considered the parameter b that is the number of B-blocks
in which the global VM placement problem is split. We pointed
out a trade-off between using many small building blocks (with
the risk of reducing the overall VM placement solution quality
due to the fragmentation of the physical node resources over
blocks) and using few large building blocks (with the risk
of being unable to solve the optimization problem for the
B-block). We provide an extensive evaluation of this trade-
off providing the insight to understand how b impact on the
quality of the CBP solution. Furthermore, we proposed a new
algorithm for the estimation of a value b∗ of B-blocks that can
provide high quality for the global VM placement problem
solution while preserving the resolvability of the problem.
Our experiments confirm that our solution outperforms the

initial proposal of CBP presented in [5] for every considered
scenario.

REFERENCES

[1] J. Gantz and D. Reinsel, “The digital universe in 2020: Big data,
bigger digital shadows, and biggest growth in the far east,” IDC iView:
IDC Analyze the Future, 2012, http://www.emc.com/collateral/analyst-
reports/idc-the-digital-universe-in-2020.pdf.

[2] B. Rochwerger, D. Breitgand, A. Epstein, D. Hadas et al., “Reservoir
- When one cloud is not enough,” IEEE computer, vol. 44, no. 3, pp.
44–51, 2011.

[3] K. Mills, J. Filliben, and C. Dabrowski, “Comparing VM-Placement
Algorithms for On-Demand Clouds,” in Proc. of IEEE International
Conference on Cloud Computing Technology and Science (CloudCom).
IEEE, 2011, pp. 91–98.

[4] M. Kao, Encyclopedia of Algorithms. Springer, 2008.
[5] C. Canali and R. Lancellotti, “Exploiting Classes of Virtual Machines

for Scalable IaaS Cloud Management,” in Proc. of the 4th Symposium
on Network Cloud Computing and Applications (NCCA), Munich,
Germany, Jun. 2015.

[6] M. Rabinovich and O. Spatscheck, Web caching and replication.
Addison-Wesley Boston, USA, 2002.

[7] C. Canali and R. Lancellotti, “Improving Scalability of Cloud Moni-
toring through PCA-Based Clustering of Virtual Machines,” Journal of
Computer Science and Technology, vol. 29, no. 1, pp. 38–52, 2014.

[8] ——, “Exploiting ensemble techniques for automatic virtual machine
clustering in cloud systems,” Automated Software Engineering, vol. 31,
no. 3, pp. 1–26, Sep. 2014.

[9] ——, “An Adaptive Technique to Model Virtual Machine Behavior for
Scalable Cloud Monitoring,” in Proc. of IEEE Symposium on Computers
and Communications (ISCC), Madeira, Portugal, Jun. 2014.

[10] T. Setzer and M. Bichler, “Using matrix approximation for high-
dimensional discrete optimization problems: Server consolidation based
on cyclic time-series data,” European Journal of Operational Research,
vol. 227, no. 1, pp. 62–75, 2013.

[11] W. Fang, X. Liang, S. Li, L. Chiaraviglio, and N. Xiong, “VMPlanner:
Optimizing virtual machine placement and traffic flow routing to reduce
network power costs in cloud data centers,” Computer Networks, vol. 57,
no. 1, pp. 179 – 196, 2013.

[12] R. Zhang, R. Routray, D. M. Eyers, D. Chambliss et al., “IO Tetris:
Deep storage consolidation for the cloud via fine-grained workload
analysis,” in Proc. of IEEE 4th International Conference on Cloud
Computing (CLOUD), Washington, USA, Jul. 2011.

[13] M. Andreolini, S. Casolari, and M. Colajanni, “Models and framework
for supporting runtime decisions in Web-based systems,” ACM Trans-
actions on the Web, vol. 2, no. 3, pp. 1–43, 2008.

[14] B. Addis, D. Ardagna, B. Panicucci, M. S. Squillante, and L. Zhang, “A
hierarchical approach for the resource management of very large cloud
platforms,” IEEE Transactions on Dependable and Secure Computing,
vol. 10, no. 5, pp. 253–272, 2013.

[15] D. Breitgand and A. Epstein, “Improving consolidation of virtual ma-
chines with risk-aware bandwidth oversubscription in compute clouds,”
in Proc. of IEEE INFOCOM, Orlando, FL, March 2012.

[16] L. Zhang and D. Ardagna, “SLA Based Profit Optimization in Auto-
nomic Computing Systems,” in Proc. of International Conference on
Service Oriented Computing (ICSOC), New York, USA, Nov. 2004.


