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Abstract—A major challenge of IaaS cloud data centers is
the placement of a huge number of Virtual Machines (VMs)
over a physical infrastructure with a high number of nodes.
The VMs placement process must strive to reduce as much as
possible the number of physical nodes to improve management
efficiency, reduce energy consumption and guarantee economical
savings. However, since each VM is considered as a black box with
independent characteristics, the VMs placement task presents
scalability issues due to the amount of involved data and to the
resulting number of constraints in the underlying optimization
problem. For large data centers, this condition often leads to
the impossibility to reach an optimal solution for VMs place-
ment. Existing solutions typically exploit heuristics or simplified
formulations to solve the placement problem, at the price of
possibly sub-optimal solutions. We propose an innovative VMs
placement technique, namely Class-Based, that takes advantage
from existing solutions to automatically group VMs showing
similar behavior. The Class-Based technique solves a placement
problem that considers only some representatives for each class,
and that can be replicated as a building block to solve the global
VMs placement problem. Our experiments demonstrate that the
proposed technique is viable and can significantly improve the
scalability of the VMs placement in IaaS Cloud systems with
respect to existing alternatives.

I. INTRODUCTION

Cloud computing is emerging as an innovative paradigm
for the deployment of novel applications that must face
highly variable workloads and to reduce the costs associated
to the management of the ICT infrastructure. The typical
platform for cloud computing provides computational, storage
and networking resources with a on-demand, pay-as-you-go
philosophy. The expected growth in the amount of data stored
and processed in cloud systems by two order of magnitude in
fifteen years [1] is a clear sign of the cloud success. The growth
of cloud computing is leading to the deployment of larger and
even more powerful data centers, hosting an always increasing
number of Virtual Machines (VMs). The complexity of such
infrastructures opens new challenges for automated monitoring
and management processes. In particular, a critical task for
the management of IaaS cloud computing data centers is the
VMs placement on the physical nodes of the infrastructure,
that presents scalability issues as the data centers grow in size.
The typical problem formulation is that of a multi-dimensional
bin packing where the optimization goal is to minimize the
number of physical nodes required to host the VMs, and the
capacity requirements of each VM correspond to the future
demand of multiple resources (e.g., CPU, memory, network
traffic) at different times in the future [2], [3]. However, as the

nature of problem is NP-hard, reaching an optimal solution
for the problem may be not feasible as the number of VMs
increases, because of the huge amount of time and memory
taken by the optimization problem solver. The state of the
art solutions typically rely on simplifications to reduce the
dimensionality of the problem and/or on simple heuristics
to reduce its computational cost. The most straightforward
approach to reduce the problem dimensionality is to consider
only the nominal capacity of each VM [4], [5], [6] instead
of taking into account their actual future requirements. This
solution increases the scalability of the VMs placement be-
cause it removes a major source of additional dimensions
in the bin packing problem, that is the change over time
of VMs resource demand. However, considering only the
nominal capacities has the major drawback of overestimating
the resources that must be provided to the VMs, because
the actual utilization of resources for each VM is typically
below 100% [7]. Hence, a model based on nominal capacity
determines an inefficient use of the cloud data center, resulting
in a higher-than-needed number of physical nodes used for
the overall infrastructure. Another approach is to reduce the
dimensionality of the problem by limiting the number of
resources that are considered in the bin packing problem
and/or the number of time intervals that are considered for the
constraints of the optimization problem [8], [3]; but, again,
this approach is likely to result in sub-optimal solutions.
Furthermore, even with these approaches the computational
cost for solving the VM placement problem remains rather
high, especially for large data centers, to the point where
the time to obtain a solution may be not acceptable for the
management of the infrastructure. To address these issues,
simple heuristics are typically preferred to more complex and
computationally expensive approaches [9] because they can
provide a VM placement solution in a short time. However,
the most widespread heuristics, such as First Fit Decreasing
(FFD) [10], can only manage few dimensions of the placement
problem, thus hindering the use of multiple time intervals.
Hence, adoption of heuristics reduces the placement solution
quality. We can summarize that state of the art approaches
for the VMs placement problem typically fails to consider
the actual behavior of VMs and/or rely on simple heuristics,
producing in both cases low quality solutions that lead to a
waste of cloud data center resources.

The main contribution of this paper is the proposal of a
novel technique for VMs placement over the physical nodes
of a cloud data center. The proposed technique, namely Class-
Based Placement, leverages the knowledge of classes of VMs



with a similar behavior in terms of resource usage: to this aim,
we exploit recent methodologies to cluster together similar
VMs [11], [12] in cloud systems. Through our proposal, we
shift the point of view from a single bin-packing problem, that
considers the whole data center, to a much smaller problem,
limited to a few representatives of each class, that can be
replicated as a building block to create the solution for the
global VM placement problem. The small size of the building-
block problem can be solved to optimality in short time
even taking into account an amount of data and constraints
that would not be possible to consider in the global bin-
packing problem. We claim that our technique can reduce the
computational demand while achieving higher quality in the
VM placement solution compared to existing alternatives. To
the best of our knowledge, no other study follows this approach
to obtain in short time a high-quality solution for the VMs
placement problem in cloud computing.

We apply our technique to traces obtained from a real
data center to evaluate the feasibility of the proposed solution.
We compare the quality of our solution with state of the
art models for VMs placement [2]. Our results demonstrate
that: (1) exploiting similarities among VMs provides a viable
solution for the VM placement problem in IaaS clouds; (2)
standard techniques based on the solution of optimization
problem solvers cannot reach optimal solutions for the bin-
packing problem unless the number of VM is rather small (in
the order of 150-200 VMs); even worse, in the case of large
problems (in the order of 1000 VMs), the solvers cannot obtain
any integer feasible solution within a reasonable time frame;
(3) with the exception of very small problems, our proposal
outperforms existing techniques from both the points of view
of resolution time and quality of the solution. This last result
is very important because cloud data centers tend to host a
very large number of VMs: hence, the typical cloud scenario
corresponds to the case where our proposal provides major
benefits.

The remainder of this paper is organized as follows. Sec-
tion II describes the reference scenario for our proposal, while
Section III describes our model for solving the VM placement
problem. Section IV describes the results of the methodology
evaluation. Finally, Section V discusses the related work and
Section VI concludes the paper with some final remarks and
outlines open research problems.

II. REFERENCE SCENARIO

In this section we describe the reference scenario for
our proposal. Starting from this scenario, we illustrate the
characteristics of the proposed technique for the management
of a cloud data center, focusing on the operations that decide
the placement of the VMs over the physical nodes of the
infrastructure.

The application of our proposal to a cloud data center is
based on the following two assumptions.

First, we consider that the VMs placement is a periodic
task that aims at mapping VMs over the physical nodes of the
infrastructure with the goal of minimizing the number of used
nodes, while satisfying the requirements of each VM in terms
of resource usage. The details of the VM placement process

are shown in Figure 1 and described in the following of this
section.

Second, we assume to be able to group VMs into classes
with similar behavior, where VMs belonging to the same class
exhibit similar resource requirements. The presence of classes
of VMs with similar behavior represents a common condition
that occurs every time an application is replicated over a dis-
tributed architecture for scalability and availability: in this case,
a dispatcher distributes the requests among the VMs running
the same software component of an application, with the goal
of balancing the application load; this mechanism ensures that
the VMs of same class exhibit a similar behavior in terms
of resource requirements [13]. Automatic methodologies to
cluster VMs with similar behavior have been recently proposed
in literature. Some solutions require a long time of observation
to define a VM behavior model [11], [14], [12] and are more
suitable for IaaS cloud characterized by long term commitment
of the VMs customer (as in the case of the Amazon cloud
reserved instances), while other methodologies can provide
rapidly a preliminary classification [15] and are suitable for
a more dynamical scenario. Another scenario where we have
knowledge of VM classes is the case of private clouds or
infrastructure supporting a SaaS cloud, as the cloud provider
has a complete knowledge of the software running on the VMs.

Figure 1 depicts the periodic VMs placement in a cloud
data center that adopts the proposed approach. We start from
multiple VMs that are grouped into classes (left margin of
the Figure): we recall that VMs of the same class exhibit
similar resource requirements over time. It is worth to note
that the VM resource usage is constantly monitored, and the
monitoring process may take advantage of the knowledge
of VM classes to reduce the amount of data collected and
improve scalability, as discussed in [11], [12]. The output
of the monitoring process is represented as the data objects
marked as “P1”, . . . , “Pc”, grouped by class. Such samples on
the past resource usage are fed into a Prediction step. This task
can be implemented according to multiple techniques, ranging
from the simplest solutions assuming that resource demands
follow a periodical cycle with a length of 24 hours [16],
to complex predictive techniques that can cope with trends,
periodic behaviors and state changes [17]. The output of the
prediction is an estimation of the resource usage in the future
for each class of VMs (data marked with “F1”, . . . , “Fc”).
The future demands and the description of the infrastructure
of the data center (marked with the letter “I”) are the input
of the Consolidation model, that is the core of our proposal.
The consolidation model is based on the bin-packing problem
and its output is a solution of such problem that contains the
decision (marked with letter “D” in Figure 1) on the mapping
between VMs and physical nodes. The placement decision is
then applied to the VMs by powering on and off the physical
nodes of the cloud infrastructure.

III. PROBLEM FORMULATION

We now discuss the consolidation model that represents
the core of the VMs placement technique. First, we describe
the consolidation model that is typically used in literature [2],
[3]; then, we discuss the possible simplifications that can be
applied to improve the scalability of this task, and we present
the Class-based consolidation model proposed in the paper.
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Fig. 1: VMs placement in a cloud data center

A. Multi-Dimensional Bin Packing model

The consolidation model used for VMs placement is typ-
ically based on a multi-dimensional bin packing problem,
where one or more VM resources are considered for con-
solidation during the next planning period, and the planning
period is divided into a set of time intervals T. The multi-
dimensional bin-packing model is shown in Figure 2. The
model input is the prediction of future requirements for every
VM in multiple time intervals (the data with the letter “F”).
In this case we do not divide the future requirements by class
as in Figure 1 because this consolidation model is not class-
aware. An additional input of the consolidation model is a
description of the data center infrastructure, with the available
physical nodes and their capacity (the data of the letter “I”). A
single bin-packing problem is solved for the whole data center
providing the placement of VMs over the nodes of the data
center (the output is represented as the data with the letter
“D”). The problem can be formalized as follows.

F

I
Global

bin
packing 
solver

D

Consolidation
model

Fig. 2: Consolidation model with multi-dimensional bin-packing

Let us consider a set M of VMs that have to be deployed
on a set N of physical nodes. The matrix R represents the

resource requirements of the VMs over multiple observation
time intervals. Although the most general version of the
problem involves multiple resources of the VMs, such as
CPU, memory, network, and disk [2], [18], [19], we limit
our model to a single resource, that is the CPU utilization
that is typical bottleneck resource for cloud infrastructure [20].
However, it is worth to note that an extension of our model
to include multiple resource is straightforward. In our model
Rm,t represents the CPU requirement of VM m (m∈M) for the
time interval t (t ∈ T). Furthermore, for each node, V models
the available capacity on the node. Specifically, Vn represents
the available CPU capacity on node n (n ∈ N). We can define
the optimization problem as follows:

min ∑
n∈N

On (1)

subject to:

∑
n∈N

In,m = 1 ∀m ∈M (2)

∑
m∈M

Rm,t · In,m ≤Vn ·On ∀n ∈ N,∀t ∈ T (3)

In,m = {0,1} ∀n ∈ N,∀m ∈M (4)
On = {0,1} ∀n ∈ N (5)

Where On is a binary decision variable that discriminates if
a physical node n in the data center is on or off, In,m is a binary
decision variable that decides if VM m is allocated on node
n. Expression 1 is the objective function of the optimization
problem that aims to minimize the number of used nodes. Due
to the set of constraints 2, every VM is allocated exactly on one
physical node. The set of constraints 3 expresses the bound that
on each node the allocated VMs must not exceed the overall
capacity of the node for every considered time interval. Finally,



the sets of constraints 4 and 5 model the boolean nature of the
decision variables.

When solving bin packing problems, the number of dimen-
sions (in this case the number of time intervals |T| considered
in our problem formulation) has major impact on the time to
reach a solution. To improve the scalability of VMs placement
problem, a common approach is to reduce the cardinality of
constraints 3 in the problem formulation. To this aim, we
introduce a different set of time intervals T′ such that |T′|< |T|
and we bind each new interval t ′ ∈T′ to a set of time intervals
{t1, . . . , tk} ∈ T. The new constraint formulation will consider
for each VM m a requirement Rm,t ′ = max(Rm,t1 , . . .Rm,tk). In
the extreme case, when the number of time intervals is reduced
to one, the multi-dimensional bin packing reverts to a one-
dimensional bin packing problem. In this case, we can exploit
heuristics such as the First Fit Decreasing (FFD) algorithm to
reach an approximate solution of the problem in a very short
time [10]. However, the reduction of dimensionality typically
leads to suboptimal solutions for the VM placement problem.

B. Class-Based Consolidation Model

The Class-based consolidation model aims to leverage the
knowledge of classes of VMs with similar behavior in terms
of resource usage. It is worth to note that, by exploiting
recently proposed techniques [11], [12] that automatically
cluster similar VMs, such knowledge can be obtained even in
IaaS cloud systems, where the cloud providers typically do not
have any knowledge of the applications running on the VMs.
The basic idea is to reduce the global bin packing problem,
that operates on the whole data center, to a smaller problem
involving only few VMs for each class. The reduced size of
the problem allows us to solve to optimality the consolidation
model considering a multi dimensional formulation with a
number of time intervals that would not be possible to consider
for the global problem; then, the obtained solution can be
replicated as a building block to determine the solution for
the global VM placement problem.

The Class-Based placement is shown in Figure 3. Again the
future VMs requirements are given as input, but in this case
we assume that the VMs are divided into a set C of classes,
where all the VMs of a same class present similar resource
requirements (data on resource requirements are labeled from
“F1” to “Fc” for the different classes). The basic idea is to
divide the global set of VMs in a number b (given as input
to the consolidation model) of B-blocks, all composed by
the same number of VMs for each class, and one E-block
containing the rest of the VMs. These blocks of reduced size
are exploited to determine the global solution to the VMs
placement problem, as formalized in the rest of this section.

For each class c∈C, we define a set of VM Mc belonging
to that class such that:

⋃
c∈C

Mc = M

Mc1 ∩Mc2 = /0 ∀c1,c2 ∈ C

We recall that the VMs belonging to the same class run the
same software component of an application, so we can assume

Fc I

B-Block
bin packing 

solver

D

Consolidation
model

E-Block
bin packing 

solver

Block splitting

bF1
...

Fig. 3: Class-based consolidation model

that they are characterized by similar resource demand. Hence,
we can define their resource demand as:

Rm,t = Rc,t ∀c ∈ C,∀m ∈Mc,∀t ∈ T (6)

The global set of VMs is divided in b B-blocks composed
by the same number of VMs for each class, while the rest of
the VMs form the E-block. For each class c∈C, each B-block
contains a set Bc ⊂Mc of VMs belonging to that class c. The
remaining set of VMs Ec that are not assigned to any B- block,
is assigned to the E-block. Given the number of B-blocks b,
the cardinality of each set is:

|Bc|= b|Mc|/bc ∀c ∈ C
|Ec|= |Mc|%b ∀c ∈ C

Since all the VMs of a same class present similar resource
requirements, the placement solution computed for a single
B-block can be replicated on all the remaining B-blocks. The
B-block sub-problems is an optimization problem similar to the
one in Section III-A, but applied to the subset of VMs

⋃
c∈C Bc.

Considering the presence of VMs classes (Equation 6), we can
express the constraint 3 as:

∑
c∈C

∑
m∈Bc

Rc,t · In,m ≤Vn ·On ∀n ∈ N,∀t ∈ T

A similar set of constraints applies to the E-block problem.

To summarize, the global placement solution can be ob-
tained through the following steps: 1) solving the placement
problem for one B-block and replicate the solution for all



the B-blocks; 2) solving the placement problem for the E-
block. The reduced size of these blocks allows us to solve
the corresponding placement problems considering a multi-
dimensional formulation with several time intervals within an
amount of time that is acceptable for a cloud data center
management.

It is worth to note that the choice of the parameter b would
deserve a more accurate analysis, but in this preliminary work
we assume that b is equal to the cardinality of the smaller class
in the system: b = min

c∈C
(|Mc|). We leave further analysis about

the choice of b and its impact on the VMs placement solution
as a future work.

IV. EXPERIMENTAL EVALUATION

In this section we present the results of the experimental
evaluation regarding the proposed placement technique. For
our evaluation, we consider the quality of the solution and the
corresponding resolution time.

A. Experimental setup

We obtain an extensive dataset from a private cloud data
center. The set contains up to 1200 VMs traces for the
resource usage of Web/application/database servers and ERP
applications, where the VMs belongs to 44 different classes,
with each class containing from 8 to 50 VMs. We use our
traces as the output from the prediction step in the VM
placement problem. For our experiments we consider the CPU
resource, that is well-know to be the bottleneck resource for
this type of applications [20]. The resource usage is measured
in intervals of 5 minutes, that is a setup consistent with other
experiments in literature [21].

We consider multiple scenarios characterized by different
numbers of VMs to be placed on the physical nodes of
the virtualized data center. In particular, we consider a VMs
set size ranging from 150 to 1200 VMs. For each VM the
CPU utilization is in the range [0%-100%] with an average
value of 54%. For each physical node the CPU capacity is
800%, meaning that each node can host 8 VMs with CPU
utilization of 100%. For each scenario, we compare different
consolidation models operating over a planning period of 24
hours. The proposed Class-Based Placement (CBP) is solved
with 288 five-minutes time intervals and the b parameter is
set to the size of the smallest class that is 8. For the Multiple
Bin Packing (MBP) model, we consider multiple setups with a
different dimensionality of the problem (in terms of number of
time constraints). The considered numbers of dimensions for
the MBP model are 288 (five-minutes intervals), 24 (1 hour), 2
(12 hours) and a single time interval (24 hours). We have also
implemented a First Fit Decreasing (FFD) heuristic [10], that
we used as a term of comparison to evaluate the placement
solution quality. The FFD heuristic does not allow to consider
time constraints, hence it is evaluated with one time interval
of 24 hours. All the experiments are run on 2.4 GHz, 16 cores
Intel Xeon with 16 GB RAM, using IBM ILOG CPLEX 12.6
as the optimizer solver1.

1www.ibm.com/software/commerce/optimization/cplex-optimizer/

As a metric for the VMs placement quality, we consider
the number of physical nodes that are required for the allo-
cation. The number of nodes for each solution is expressed
with respect to an estimation of the optimal solution for the
considered scenario. The MBP model with five minute time
interval (MBP-5min) represents a lower bound for all the
feasible allocations, as this consolidation model exploits all the
available information to find an optimal solution. However, the
number of variables and constraints for this model increases
rapidly with the VMs set size, producing an optimization
problem instances whose computation takes extremely long
times or does not produce any feasible solution due to the
huge main memory requirements, that may finally cause the
solver to abort the optimization processing. For this reason, we
will use the objective function value of the LP relaxation of
the MBP-5min consolidation model (1) as a lower bound for
the optimal number of physical nodes to use. In other words,
we relax the boolean nature of the decision variables, assuming
that parts of a VM can be assigned to different physical nodes.
In the formulation this corresponds to simply removing the
constraint 4. This allocation is obviously not feasible from a
technical point of view but can be easily computed, hence
we exploit it as a convenient lower bound for any feasible
allocation[2].

It is worth to note that for many problems, starting from
a medium size (e.g 400 VMs), the resolution of the MPB
consolidation models may take long times, such as hours or
days, even for a limited number of time intervals. For that
reason, we used a time limit of 30 minutes (1800 seconds) for
each problem and considered the best integer solution found
as the solution of the placement problem, as commonly done
in similar research studies [2], [22].

B. Experimental results

We start our experiments with a simple comparison of the
different consolidation models to evaluate if they can reach an
optimal or a viable solution within the expected time limit.
Table I shows for which scenarios it was possible to solve the
problem instances to optimality (S), reach an integer solution
even if not optimal (L), or not even find any feasible integer
solution (N) within the 30 minutes time limit. We evidence
the cells related to unsolvable problem instances with a gray
background. For the CBP technique (second column of the
table) we report two values separated by a slash symbol: the
first refers to the B-block and the second to the E-block. In
this first analysis, we omit the FFD heuristics and focus only
on consolidation models relying on the use of an optimization
problem solver (due to the heuristic simple nature, FFD always
reaches a feasible solution within 30 minutes). A More detail
discussion of the FFD heuristics is provided in the following
of the section, when we discuss the results about the quality
of the provided solution.

We observe that only small sized problem instances (up
to 200 VMs) can be solved to optimality by every consoli-
dation model. On the other hand, starting from 250 VMs the
resolution process lasts longer than the imposed time limit
for every MBP model with more than one time interval. For
MBP models considering short time intervals of 5 minutes
and 1 hour, it is not possible to find a feasible integer solution
within the time limit starting from medium sized problems of



TABLE I: Resolvable scenarios

Consolidation Models
VMs Set CBP MBP MBP MBP MBP

Size 5min 1d 12h 1h 5min
150 S/S S S S S
200 S/S S S S S
250 S/S S L L L
300 S/S S L L L
400 S/S L L L N
500 S/S L L L N
600 S/S L L N N
700 S/S L L N N
800 L/S L L N N
900 L/S L L N N
1000 L/S L L N N
1100 L/S L N N N
1200 L/S N N N N

400 and 600 VMs, respectively; for larger time of 12 hours
and 1 day, the size of resolvable problems grows to 1000
and 1100, respectively. On the other hand, the breakdown
in building blocks allows the CBP model to find a feasible
integer solution for every VMs set size, with the possibility to
solve to optimality even scenarios up to 700 VMs. From these
results, it is evident that the CBP technique allows us to solve
significantly larger problems with respect to a MBP approach,
even when the MBP problem considers few or just one time
intervals.

Let us now evaluate the quality of the solutions for the
different consolidation models. We start from the analysis of
problems characterized by small-medium VMs set sizes (from
150 to 300 VMs), that are the only scenarios for which a
feasible solution of the MBP-5min model can be found. The
solution qualities are compared in Fig. 4, where we also show
the results achieved by the FFD heuristic. We recall that the
solution quality is measured as the number of physical nodes
required for the allocation with respect to the objective function
value of the LP relaxation of MBP (5-min). In other words,
a solution quality of 110% means that the allocation required
10% physical nodes more with respect to the solution of the
LP relaxation problem.

The first observation is that the FFD heuristic provides low-
quality results for every considered problem size, requiring up
to one-third more physical nodes with respect to the lower
bound solution. Every consolidation model based on CBP and
MBP outperforms the FFD heuristic. A second observation is
that the quality solution of the MBP models increases with the
number of considered time constraints; in particular, the MPB-
5min always achieves the best solution in terms of number of
required physical nodes. If we analyze the performance of the
proposed CBP-5min model, we note an interesting trend: while
for small scenarios (150 and 200 VMs) the quality of the CBP-
5min solution is worse with respect to all the MBP models,
the relation changes as the VMs set size increases: for 250 and
300 VMs, the CBP-5min outperforms the MBP-1d and MBP-
12h models; for the 300 VMs, it achieves the same quality
with respect to the MBP-1h model.

To better evaluate the behavior of the different consoli-
dation models for small-medium scenarios, we analyze the
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resolution times for the considered problem instances, that are
shown in Table II. From the table, we clearly see that the CBP-
5min can always be resolved in a short time, while for the MBP
models the resolution time rapidly increases with the VMs
set size. For 250 and 300 VMs, the resolution of every MBP
model with more than one time interval exceeds the time limit
of 1800 seconds. These results show that for a small problem
(under 200 VMs) the MBP model is the preferable choice, and
can be solved to optimality even if it considers 5 minutes time
intervals. On the other hand, as the number of VMs to allocate
increases, the resolution time tends to rapidly increase: in these
cases, there is a trade-off between resolution time and solution
quality, and the preferable choice depends on the management
requirements of the data center. A final consideration refers to
the FFD heuristic: the poor quality of the achieved solution
is due to the simple nature of this consolidation model that
cannot take into account the time-related characteristics of the
workload. However, due to its simplicity, the FFD heuristic
can provide results in less than one-tenth of second for the
considered problem sizes.

We now pass to analyze the case of medium-large scenarios
(from 300 to 1200 VMs). Fig. 5 shows the solution qualities
for the different consolidation models. This graph does not
report the results for the MBP-5min model, because it cannot
find any feasible solution for instances larger than 300 VMs.

The graph clearly shows how the increase in the number
of VMs causes the impossibility to find a feasible integer
solution within the time limit for the MBP models: we see the
histogram bars referred to MBP models gradually disappearing
as the number of VMs increases. For 1200 VMs, only the
FFD heuristic and the proposed CBP model are able to find
a feasible solution within 30 minutes. From the graph is also
evident how MBP models with few time constraints allow the
resolution of problem instances with larger numbers of VMs,
but at the expense of solution quality.

If we now analyze the relation between the CBP-5min
proposal and the MBP-1h model, that can be solved within the
time limit only until scenarios of 500 VMs, we observe a trend
reversal with respect to the previous results: starting from 400
VMs the CBP-5min outperforms the MBP-1h model, showing



TABLE II: Resolution times

Consolidation VMs Set Size
Models 150 200 250 300

CBP-5min (B/ε) 0.42/0.46 0.49/0.28 0.54/0.49 0.98/0.40
FFD-1d 0.05 0.05 0.06 0.07
MBP-1d 0.21 11.36 45.28 147.73

MBP-12h 4.13 79.39 1800 (L) 1800 (L)
MBP-1h 31.87 91.20 1800 (L) 1800 (L)

MBP-5min 233.09 270.59 1800 (L) 1800 (L)
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that for medium sized scenarios even an hourly aggregation
of the resource usage data does not provide the consolidation
problem with enough information to find a solution as efficient
as our proposal. For scenarios with more than 500 VMs,
the solutions achieved by MBP-12h and MBP-1d models are
significantly worse with respect to the CBP-5min model, with
a quality difference ranging from 15% to 26%.

We can conclude that the CBP-5min allows to find a
feasible solution for every VMs set size, up to 1200 VMs.
While for small scenarios the preferable choice remains a
MBP-5min that could solve to optimality the global allocation
problem, starting from medium-sized scenarios (400 VMs) the
proposed solution outperforms other consolidation models both
in terms of resolution time and number of required physical
nodes.

V. RELATED WORK

The management of cloud data centers is posing new
challenges due to the growing size and complexity of these
infrastructures. In particular, the placement of VMs over the
physical nodes of the data center represents a critical task to
limit the costs of the infrastructure management and avoid
waste of computing resources. An efficient placement aims
to minimize the number of physical nodes required to allocate
a given set of VMs in a cloud data center. To this purpose,
large data centers can better leverage techniques such as
selectively powering down idle servers or using hardware
support for idle sleep states [7]. However, exploiting these
techniques requires the resolution of the optimization problem
described in Section III, to determine how to map VMs over

the physical nodes of the cloud infrastructure. This problem
is a multi-dimensional bin-packing with bounds related to
the requirement of multiple VM resources at different time
intervals over a future planning period. Solving this problem is
a challenge from a computational point of view, where standard
optimization algorithms struggle to reach an optimal solution
within acceptable time frames. To reduce the dimensionality
of the problem, multiple solutions have been proposed in
literature or applied in real systems.

The most straightforward solution is to simply discard
any information about VM demands over time and consider
only the nominal maximum requirements of each VM. This
approach is very effective in simplifying the bin-packing
problem and is therefore widely adopted [4], [5], [6], but
introduces the unreal assumption that every VM uses the 100%
of its resources. Any under-utilized VM determines a waste of
resources in the data center and increases the carbon footprint
of the cloud infrastructure.

Another approach to tackle the computational issues of VM
placement is to reduce the problem dimensionality by limiting
the number of VM resources and time intervals that are
considered in the bin-packing problem. For example, instead
of considering multiple resources (CPU, memory, network I/O,
disk I/O) and a fine-grained division of the planning period, the
focus is limited to just the CPU requirement during a 24-hour
long time interval [8], [2]. In our experiments, we consider
the CPU requirements over 5-minutes time intervals, and our
approach can be easily extended to take into account additional
resources.

Finally, the last approach to tackle the computational
issues of the bin-packing problem is to exploit heuristics to
reduce the computational cost of the solution. However, as
pointed out in [9], most research is focused on problems
with few dimensions, while if we consider the impact of
multiple resources considered in multiple time intervals in a
future planning period, the number of dimensions significantly
grows. The most popular heuristics are applied to problems
characterized by a number of dimensions ranging from one
to three [23], [24]. As the dimensionality of the problem
exceeds these values, the quality of the solution identified by
the heuristics drifts away from the optimum. Our approach
is completely different from these studies, because we reduce
the number of VMs and nodes involved in the bin-packing
problem to form a building block of limited size where we
can easily apply complex optimization, without the need to
reduce the number of dimensions and constraints.

VI. CONCLUSIONS

In this paper we tackled the critical problem of VMs
placement in IaaS cloud computing data centers. Specifically,



we pointed out the scalability challenges of this task in large
cloud infrastructures.

To cope with the scalability issues of current placement
techniques, we propose an alternative approach where VMs
are not considered as black boxes with independent resource
requirements. Exploiting recent solutions that can cluster to-
gether VMs exhibiting similar behaviors in terms of resource
usage, we propose a novel VMs placement technique, namely
Class-Based, that solves a small-size placement problem and
replicates it as a building block to obtain the global solution.

An extensive set of experiments demonstrates that our
proposal outperforms existing solutions by reducing the num-
ber of physical nodes required to host the VMs in a cloud
data center from 15% to 26% with respect to widely used
alternatives. Furthermore, the performance gain of our proposal
is more evident for large data centers, that represent the most
challenging scenario for cloud computing.
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