
A distributed architecture for gracefully degradable Web-based services

Mauro Andreolini
Department of Information Engineering

University of Modena and Reggio Emilia

andreolini@unimore.it

Sara Casolari
Department of Information Engineering

University of Modena and Reggio Emilia

casolari.sara@unimore.it

Michele Colajanni
Department of Information Engineering

University of Modena and Reggio Emilia

colajanni@unimore.it

Abstract

Modern Web sites provide multiple services that are

often deployed through distributed architectures. The

importance and the economic impact of Web-based ser-

vices introduces significant requirements in terms of per-

formance and quality of service. In this paper, we de-

scribe the necessary load monitoring, dispatching and

access control mechanisms that allow the architecture

to achieve graceful degradation even in the case of un-

predictable and overwhelming user request loads. The

implemented access control strategy aims to favor the

completion of already initiated user sessions, with re-

spect to requests pertaining to new sessions.

1 Introduction

Over the years, the Web has evolved from a simple

container of static information to the main interface for

sophisticated and dynamic network services, such as in-

formation portals, e-commerce and home banking [2],

whose level of performance is often dictated bySer-

vice Level Agreements. The workload subject to mod-

ern Web-based information systems has become increas-

ingly unpredictable and difficult to reproduce in bench-

marking environments. Besides the usual concepts of

user sessions, think times among page requests, self-

similarity [4], modern services employ the concept of

different “user categories” (guest, member, gold) which

further complicate the analysis through the adoption of

many workloads. Nowadays, the typical infrastructure

for supporting Web-based services is based on a multi-

tier logical architecture that tends to separate the three

main functions of service delivery: HTTP interface,

application (or business) logic and information reposi-

tory [2]. We present a variation of this architecture in

Figure 1. Thefront-end node(also calledWeb switch)

acts as a representative interface for the Web site.Thedy-

namic content providerlayer is a cluster of application

server nodes. Its primary task is to receive inbound re-

quests for dynamic Web pages and build the appropriate

responses. Requests for static objects are routed to one

of the Apache Web servers of thestatic content provider

layer, instead. Theinformation repositoryis responsible

for the retrieval of the information needed to build dy-

namic Web pages. It is built up of a cluster of database

1



servers.

Figure 1. Proposed system architecture

Answering to a request reaching a multi-tier Web-

based system is a complex task that triggers the creation

and interaction of several processes, which are deeply

correlated and may push the hardware and software in-

frastructure bejond their maximum capacity, thus caus-

ing a rapid degradation of performance. This system be-

havior has many negative consequences. The session

may be suddenly aborted with a bad publicity for the

Web site owner. An appropriate and fast reaction to ser-

vice degradation in a short time interval is almost im-

possible. The reason behind the performance collapse is

the exhaustion of suddenly degrading system resources

(being them hardware or software) at one or more nodes

of the architecture. This kind of resources are ‘’token-

based”, which means that only a finite number of them

is available and can be assigned to requesting processes.

When the available tokens are exhausted, additional re-

quests are queued for an unpredictable time (i.e., until

a token becomes free). A connection request may fail

because the time-out deadline is passed or because it

cannot be stored in the finite-length waiting queue of

the service node. The concept of gracefully degradable

is different from its traditional meaning, which is more

related to the fault tolerance and the recoverability of

single nodes after a hardware or software failure. By

“graceful degradation”, we mean a controlled request

refusal and a possible increase of the response time (in-

stead of a sudden peak as in traditional overloaded sys-

tems) to keep the load within the system capacity. In

this paper,we propose load monitoring, dispatching and

access control mechanisms that allow the architecture

to achieve graceful degradation when subject to request

loads exceeding the maximum capacity of the system.

The implemented access control strategy aims to favor

the completion of already started user sessions, with re-

spect to requests pertaining to new sessions.

2 Requirements of a gracefully degrad-

able architecture

Access control.An access control process is needed

to allow the Web-based service to meet the predictive

service targets or, at least, to mitigate the effects of sys-

tem overload due to excessively high request rates. This

process consists of two steps:declarationandaccess.

Declaration has the purpose of estimating the amount

of resources needed to fulfill the requirements of an

entire user session (through the assignment of proper

“weights”). After service classification, the access con-

trol mechanism checks whether there are sufficient re-

sources to satisfy the entire user session, and to decide

about allowing or refusing the request. Admission con-

trol is essential to avoid overload at the server nodes,

because this causes a significant loss of throughput [3].

Classification of a Web session.A mechanism for

Web sessionclassificationis needed to allow the Web

cluster to take any kind of operation on a request, such

as to recognize a starting session, to dispatch a request

pertaining to an existing user session to the same servers.

The classification process consists of two steps:iden-

tification andprioritization. The identification process

tracks each request with the purpose of identifying start-

ing sessions. This function is vital to the dispatcher that

2



has to keep track of active user sessions. The prioriti-

zation process understands the type of service from the

past requests, with the goal of assigning “priorities” to

the most important sessions. The latter task is crucial,

since it is impossible to understand the service type from

the very first request (usually the home page).

Session-based admission control. Given the

session-like nature of present Web workloads, it is

mandatory that the admission control mechanism oper-

ates on the basis of the entire user session. Indeed, ad-

mission on the basis of single requests is an error be-

cause, based on the load of the server nodes, the system

risks serving low-priority requests and refusing high-

priority requests. Ideally, a session-based admission

control strategy denies access to new requests while fa-

voring those related to already initiated sessions.

Session-aware request dispatcher.The infrastruc-

ture of modern, dynamic Web-based systems supports

the concept ofuser session. Most services offered to

users use state information which is preserved across

requests. There are different mechanisms for storing

the data pertaining to a session; some store information

at the clients (cookies), others store information at the

server nodes (session beans). The dispatcher must be

aware of these mechanisms and its primary goal is to

preserve state information across requests. This implies

deploying a locality-aware dispatching mechanism, that

assigns requests for documents of the same session to

the same application server node. The dispatching mod-

ule, while trying its best to serve all requests of a user

session, can decide to refuse requests for less critical ser-

vices, to allow graceful degradatation.

Evaluation of server state.The admission controller

and the dispatching algorithm must use some informa-

tion related to the back end server nodes to perform a

sub-optimal assignment or, at least, to minimize the risks

of load unbalance. Server load information tends to be-

come obsolete quickly [5]; thus, rather then relying upon

time-synchronous updates everyn seconds, it is prefer-

able to process it, in order to achieve more meaningful

figures of the system state. Typical examples of statis-

tical techniques include weighted and moving averages

of the pastk performance samples, and smoothing [1].

3 Design of the prototype

Figure 2 shows the high level design of the proposed

system. As soon as an HTTP request reaches the Web

switch, theadmission controlmodule tries to associate

it to an existing user session. If the request pertains to

an active user session, it is immediately admitted into

the system, unless the system is so overloaded that a re-

quest refusal is forced. If the request belongs to a brand

new user session, the admission control module checks

whether there is a sufficient amount of available system

resources and, based on the recent behavior of system

load, decides to admit into or to deny access to the sys-

tem. In the former case, the request is answered with

a canonicalInternal Server Errormessage. In the lat-

ter case, the request is passed to thedispatchermodule,

which has the task of selecting the “best” application

server to serve it. If the request belongs to an active

session, it is immediately dispatched to the application

server handling the appropriate session. If the request is

the first of a new user session, an application server is

chosen according to a locality-aware policy.

The access controlmechanism includes two of the

most important functions, which are tightly coupled:

admission controlandrequest dispatching. Admission

control selectively enables users to enter the system,

based on the load conditions of the server nodes. This

is the primary mechanism to avoid overload and abrupt

degradation. Request dispatching is necessary to assign

3



Figure 2. High-level design of the front end node

admitted requests to the proper Web server or applica-

tion server. Information about the infrastructure nodes,

computed by distributedload monitor processes (one

for each node), is collected by theload collectorpro-

cess at the front-end node. The architecture shown in

Figure 2 tries to accomplish the following main require-

ments. Thesession managementmodule stores the iden-

tificators of all active sessions for efficient retrieval by

the admission controller and dispatcher. The load infor-

mation, which is used to process the state of the entire

system, is computed on a per-node basis throughload

monitormodules executed at each node. These modules

collect information about the resource usage (for exam-

ple CPU, disk, network interface, open sockets ) and

send it to theload collectormodule at regular time inter-

vals. Here, the various samples are collected and sent to

thesystem load statemodule, which processes them to

build a representative view of the system state. Typical

operations include the weighted (or exponential) mean

of past sample values, or even more advanced process-

ing which involves the trend of recent/past performance

samples. The load collector makes the resulting system

state available to the admission control and dispatcher

modules.

References

[1] Y. Barishnikov, E. Coffman, G. Coffman, G. Pierre,

D. Rubinstein, M. Squillante, and T. Yimwadsana. Pre-

dictability of web server traffic congestion. InProc. of the

10th Int’l Conf. on Web content Caching and Distribution

(WCW2005), sep 2005.

[2] E. Cecchet, A. Chanda, S. Elnikety, J. Marguerite, and

W. Zwaenepoel. Performance comparison of middleware

architectures for generating dynamic web content. In

Proc. of the ACM/IFIP/USENIX Int’l Middleware Con-

ference (MIDDLEWARE2003), June 2003.

[3] L. Cherkasova and P. Phaal. Session based admission con-

trol: a mechanism for improving performance of commer-

cial web sites. InProc. of Int’l Workshop on Quality of

Service, June 1999.

[4] M. E. Crovella and A. Bestavros. Self-similarity in

world wide web traffic: evidence and possible causes.

IEEE/ACM Trans. on Networking, 5(6):835–846, Dec.

1997.

[5] M. Dahlin. Interpreting stale load information.IEEE

Transactions on Parallel and Distributed Systems, 11(10),

2000.

4


	Introduction
	Requirements of a gracefully degradable architecture
	Design of the prototype

