
Distributed Cooperation Schemes for Document Lookup
in Multiple Cache Servers

Riccardo Lancellotti
Dipartimento di Informatica,

Sistemi e Produzione

Università di Roma “Tor Vergata”

riccardo@weblab.ing.unimo.it

Bruno Ciciani
Dipartimento di Informatica

e Sistemistica

Università di Roma “La Sapienza”

ciciani@dis.uniroma1.it

Michele Colajanni
Dipartimento di Ingegneria

dell’Informazione

Università di Modena e Reggio Emilia

colajanni@unimo.it

Abstract

Architectures consisting of multiple cache servers are a
popular solution to deal with performance and network re-
source utilization issues related to the growth of the Web
request. Cache cooperation is often carried out through
purely hierarchical and flat schemes that suffer from scal-
ability problems when the number of servers increases.

We propose, implement and compare the performance
of three novel distributed cooperation models based on a
two-tier organization of the cache servers. The experimen-
tal results show that the proposed architectures are effec-
tive in supporting cooperative document lookup and down-
load. They guarantee cache hit rates comparable to those
of the most performing protocols with a significant reduc-
tion of the cooperation overhead. Moreover, in case of con-
gested network, they reduce the 90-percentile of the system
response time up to nearly 30% with respect to the best pure
cooperation mechanisms.

1. Introduction

Web caching has evolved as the first way to address Web
server and network utilization issues related to the growth
of HTTP requests. The basic idea of using one proxy
server does not work well because of very low cache hit
rates. Better performance can be achieved through interac-
tions among various proxies. Global caching or cooperative
caching architectures are used by public organizations (e.g.,
IRCache [8]), Internet Service Providers (e.g., AT&T [2]),
third party companies, such as Content Delivery Networks
(e.g., Akamai [1], Digital Island [4]). For some recent sur-
veys, see [19, 11] or [10, 20].

The two most popular approaches for cooperative lookup
refer to a hierarchy of cooperating caches (hierarchical ar-
chitecture) or to a flat cooperation topology (distributed

architectures). In hierarchical architectures a cache miss
will result in looking for the resource to an upper level
cache [23]. In distributed architectures every cache is sup-
posed to be at the same level, and missed resources at one
proxy are looked for in all cooperating cache servers. Hy-
brid architectures have been studied as well, for example
in [11] and [14]. This latter work proposes and evaluates
through a trace-driven simulator a new distributed archi-
tecture based on two-tier cooperation. The idea is to split
the cooperative lookup process in two less expensive pro-
cesses that involve subsets of the whole group of cooperat-
ing caches and different protocols.

In this paper, we give various contributions.

• We present and extensively test a prototype based
on Squid [21] that implements a two-tier cooperation
scheme similar to that described in [14].

• We also evidence the main differences among the sim-
ulation results and the experimental results obtained
here. This different behavior is important because it
motivates the search for novel cooperative architec-
tures based on hybrid schemes.

• We describe the model and implementation of two
novel two-tier schemes that address the issues raised
from the experimental results of the first prototype.

• We evaluate the performance of the three prototypes
and compare it against that of other protocols available
in Squid, such as ICP [22] and Cache Digest [12].

The rest of this paper is organized as following. In Sec-
tion 2 we discuss related work in distributed strategies for
cooperative caching. Section 3 describes the basic two-tier
architecture and its implementation. Section 4 discusses
some limitations of the basic approach and proposes two
alternative hybrid schemes for cooperation.

The experiments described in Section 5 aim to verify
that the novel protocols are a viable solution for coopera-
tive Web caching. In particular, they offer high hit rates

and limited network overhead even when the cooperation
involves many nodes. This demonstrates that both novel ar-
chitectures address in an effective way the scalability issues
related to cooperative Web caching. Moreover they are a
viable solution to cooperation in a heterogeneous environ-
ment, such as that of a wide area network.

Finally, Section 6 presents some conclusions.

2. Related work

Cooperation in distributed architectures can occur in
many different ways. However, most of the proposed so-
lutions can be classified as query-based or informed-based
cooperation mechanisms.

In query-based protocols each client request results in a
query message sent to every cooperating node (also called
peer). The most important protocol belonging to this group
is ICP, described in [22]. HTCP [18] is an evolution of ICP
thats support the complex caching semantic introduced by
the HTTP/1.1 protocol.

The main idea behind informed-based cooperation is that
the status information exchange (usually the cache index)
occurs before client requests, hence remote lookup can be
based on locally stored information. This cooperation is
more complex than that of query-based cooperation because
more choices are available. In particular, two main ques-
tions should be answered when designing such protocols:
when information is exchanged and how cache content is
coded. Information exchange can be synchronous (when
every significative change in status is notified to peers) or
asynchronous (when data exchange occurs in a loosely pe-
riodic way). Moreover, status information can be the whole
cache index or a summary of it, which is often obtained
using some sort of lossy compression, such as Bloom fil-
ters [3]. The available possibility ranges from synchronous
cache index exchange to asynchronous summary-based in-
formation exchange. Cache Digests [12] is an important
asynchronous summary-based cooperation protocol that is
available in Squid. Another well-known cooperation pro-
tocol is Summary-Cache [5], that is similar to Cache Di-
gests, but with a query mechanism used to check poten-
tial hits to reduce the risk of false hits. Another popular
informed-based protocol is CRISP [7, 6], where a central-
ized directory is used to reduce the overhead related to less
compressed status information being exchanged.

All mechanisms using one pure cooperation protocol
suffer from the lack of scalability, especially in a geographic
context, where some links can be congested or can offer
very different types of bandwidth. The limitation of ICP
is mainly related to the high traffic introduced for cooper-
ation that grows quadratically as the number of peers in-
creases [5]. Moreover, increasing the number of nodes aug-
ments the risk of packet loss or delay, hence misses are de-

tected more slowly, as suggested in [12] and as our experi-
mental results confirm.

In summary-based cooperation, we observed a clear
trade-off between information accuracy and cooperation
overhead. In general, we found that Cache Digests is very
effective in reducing cooperation overhead, but the offered
hit rate is quite low. On the other hand, CRISP based on
a centralized directory, is not suitable for a geographic en-
vironment where a centralized information repository can
become a bottleneck and a single point of failure, as noted
by the authors themselves [9].

A completely different approach in cooperation is
CARP [16] where hashing is used to partition the URL-
space between the cache servers. However, this solution
is not suitable for a geographic environment where network
status changes dynamically in a significative way.

3. Two-tier Web caching architectures

Two-tier architectures are based on a partition of the
cache servers into clusters that are mainly based on the
structure and performance of the available network connec-
tions. As described in [14], two-tier cooperation combines
informed-based and query-based protocols [10] to create
a two-step, two-tier cooperative lookup. A client request
reaching a cache server of a cooperative architecture using
a two-tier organization of the servers may experiment dif-
ferent effects. Before proceeding further with the prototype
description, we introduce some concepts related to the pos-
sible scenarios occurring in a two-tier lookup process. A
client request can result in a local hit when a valid copy of
the requested resource is found in the first contacted cache
server: the document is sent to the client and no coopera-
tion is activated. A first-tier hit occurs when the requested
resource is found inside a subset of cache servers through
the 1-st tier cooperation scheme, without activating the 2-
nd tier lookup process.

A global hit occurs when the resource is found in a
cache server by means of both cooperation tiers. We have
a global miss if the resource has to be retrieved from the
origin server, as both cooperation tiers fail in finding a valid
copy of the resource in any cache server.

The first prototype implementing this cooperation mech-
anism is called Summary-Query because it uses a
summary-based (first-tier) and a query-based protocol
(second-tier) as the mechanisms for intra-cluster and inter-
cluster cooperation, respectively. There are some differ-
ences between the scheme described in [14] and the pro-
totype proposed here. In particular, we use Cache Di-
gests [12] (instead of Summary Cache as suggested in [14])
as the informed-based protocol and ICP [22] as the query-
based protocol. In the Summary-Query scheme, for each
cluster we select one server, called master, that typically is

C1 C2

P1

P2

P3 P6

P5

P4

CD(C1)

C3

P9

P8

Summary-based
Cooperation

Query-based
CooperationP7

CD(C1)

CD(C1)

(a) Structure

C1

C2

P1/M1

P4/M2

P2

P3

P6 P5

CD(C1)

CD(C2)

ICP_HIT
(P6)

HTTP conn.

CMP_QUERY
1

CMP_HIT
4

3

2

C3
P7/M3

P9
P8

CD(C3)

C4 P10/M4
P13

P11

P12

CD(C4)

ICP_QUERY

ICP_QUERY

ICP_MISS2
32

5

(b) Operational example

Figure 1. Summary-Query architecture

the node of the cluster offering superior computing power
and better connections to other clusters. The master, as de-
scribed in greater detail later on, acts as a gateway for sec-
ond tier cooperation: each query message directed to other
clusters must pass through the cluster master, as well as ev-
ery resource coming from other clusters.

An example of the Summary-Query organization is de-
scribed in Figure 1(a). We consider nine cache servers or-
ganized in three clusters, namely C1, C2 and C3. Cluster
C1 consists of three nodes: P1, P2, and P3, where P1 is the
cluster master. Other clusters are built in a similar way, that
is C2 = {P4, P5, P6} and C3 = {P7, P8, P9}. The three
nodes {P1, P4, P7} compose the set of cluster masters in
which the second tier cooperation is carried out through a
query-based protocol.

Figure 1(b) shows how a document can be found through
the Summary-Query mechanism. To show all possible sce-
narios, this figure includes a new cluster (C4) which was
not present in the architecture in Figure 1(a). Moreover, to
better evidence the cluster masters, we added the labels M1,
M2, M3 and M4 to the nodes P1, P4, P7 and P10, respec-
tively. Let us assume that P2 executed a summary-based
lookup and that the requested resource has not been found
neither in the local cache nor inside the cluster (first-tier
miss case). The second-tier cooperation is then activated: a
query through the CMP protocol (a novel protocol similar
to ICP but simpler and lighter, described later) is sent back
to the cluster master M1 (step 1) that, in its turn, sends ICP
queries to all the other cache masters (step 2). Each of them
executes a summary-based lookup to check whether the re-
source is in its cache or inside its cluster. The responses are

then sent to the cache master M1 through a slightly mod-
ified ICP message (step 3). Packet losses are detected by
means of a time-out mechanism (as for the case of the re-
sponse coming from M4). If any of the responses reports a
hit (e.g., from M2), a CMP HIT message containing the ad-
dress of the cache server P5 is sent back to the cache server
P2 (step 4). P2 retrieves the requested resource from P5

through an HTTP connection (step 5), and forwards it to
the client.

The peer selection process (used to select a cache server
that may hold the requested resource) can use different co-
operation protocols, such as ICP and Cache-to-Master Pro-
tocol (CMP). The latter is a new protocol that has been cre-
ated to support the Summary-Query scheme. It is based on
ICP, even though it is lighter and simpler than the original
ICP protocol. Unlike ICP, CMP is able to report a hit in
a third cache server not involved in the actual message ex-
change. In our example, the CMP response flows from M1

to P2, but the protocol has to indicate a hit occurring on P5:
without proper extensions, ICP can only indicate a hit or a
miss in M1.

The described cooperation scheme was implemented as
a prototype based on Squid 2.4.

4. Novel schemes for hybrid cooperation

4.1. Motivation

When we evaluated the performance of the Summary-
Query scheme through a real prototype, we found that it
can achieve high cache hit rates, but it places a significant

amount of work on the cluster masters. Each master has
to serve client requests and has to work as a gateway for
query-based cooperation. Especially when cluster masters
do not have computational capacity higher than that of the
other cache servers, we found that this twofold role can eas-
ily congest these nodes, to the extent that the entire cooper-
ation system tends to have high response time. It is worth to
observe that this risk was not evidenced by the simulation
results reported in [14], but only by an experimental eval-
uation of which we outline the results in Section 5. Net-
work researchers using simulation as the performance eval-
uation tool should be aware of the risks of not considering
the computational cost of network-based operations at the
server side. For example, a misuse of the popular ns-2 sim-
ulator [17] not including realistic server delays may lead to
similar mistakes.

The rather poor performance results achieved by the
Summary-Query scheme motivated the search for novel ar-
chitectures (based on hybrid cooperation) that avoid con-
gestion of the cluster master node. They are described in
the following two subsections.

4.2. SummaryMaster-Query cooperation

The risk of bottleneck is due to the twofold role of the
cluster master. Hence, the simplest solution is to use ded-
icated masters, even though the price is a reduced number
of cache servers available for caching operations. This ap-
proach denotes a different cooperation architecture, called
SummaryMaster-Query, that works similarly to the pre-
vious Summary-Query scheme. The main difference is that
now each master cache acts as a gateway for its cluster and
as a directory for the other clusters, but it cannot be directly
contacted by the clients. It is interesting to note that this
scheme can be considered as a representative of informed-
based architectures that use multiple directories hosted on
and managed by dedicated servers.

The prototype of the SummaryMaster-Query scheme
is fully interoperable with the Summary-Query scheme.
Hence, it is easy to think to an adaptive scheme, where some
cache masters are dedicated, while others can accept client
requests, depending on the expected level of congestion.

4.3. Query-Summary cooperation

Query-Summary is a quite different alternative to avoid
poor performance of the Summary-Query protocol. It
activates first-tier cooperation among clusters through a
summary-based protocol and, if necessary, second-tier co-
operation in a cluster through a query-based protocol. The
motivation for Query-Summary with respect to Summary-
Query is twofold: achieving better load balancing by elimi-
nating cluster masters and driving the large majority of traf-

C1

C2
P1

P2

P3 P6

P5

P4

CD(S1)

C3

P9

P8

Summary-based
Cooperation

Query-based
Cooperation

P7

S2

S3 S1

CD(S2)

CD(S3)

Figure 2. Query-Summary architecture

fic to the best performing links. Query-Summary scheme
uses multiple representatives of each cluster for the requests
to avoid the risk of poor performance caused by overloaded
cluster masters. Moreover, in Summary-Query the nework
resource usage can be unfair. Indeed the large majority
of traffic for cooperation (due to ICP messages) transits
through the inter-cluster links that are potentially slower
and more expensive (for the ISPs) than intra-cluster links.
Hence, in Query-Summary, inter-cluster cooperation is car-
ried out through the Cache Digests protocol that generates a
minor traffic, while communications inside a cluster, where
nodes are connected through faster and less expensive links,
are based on (enhanced) ICP messages.

Figure 2 shows an example of this cooperation scheme
by considering the same architecture shown in Figure 1(a).
The three clusters are C1 = {P1, P2, P3}, C2 =

{P4, P5 P6}, and C3 = {P7, P8, P9}. We also define
the following sets for query-based cooperation: S1 =

{P1, P4, P7}, S2 = {P2, P5, P8} and S3 = {P3, P6, P9}.
Each set must contain at least one member of each cluster.
In this version of Query-Summary cooperation, we require
that clusters Ci and sets Si denote a partition of the initial
set of nodes. This leads to the conclusion that the maxi-
mum number of sets is equal to the minimum cardinality of
the clusters. Additionally, the minimum number of nodes
inside a set Si is equal to the number of clusters in the sys-
tem, because at least a member of each cluster must belong
to a set.

A local miss in a cache server (for example, P1) triggers
the lookup process on the digests that can lead to a hit inside
the set S1 to which P1 belongs (the hit could be on P4 or
P7). Alternatively, in the case of a first-tier miss, the cooper-
ation is activated inside the cluster C1. A query is sent to ev-
ery member of the cluster that is, to P2 and P3 in the exam-
ple of Figure 2. The cache server receiving the ICP request

can reply with a hit, a miss or a pointer message when a di-
gest lookup locates a hit inside its set. In our prototype, this
last message is sent through the flag ICP MISS POINTER,
as documented in [20]. In our example, P2 can reply with a
hit, if it owns the requested resource or with a pointer to P5

or P8, if it finds a hit on those nodes. Otherwise, it sends a
miss message. Similar behavior is expected from P3.

5. Experimental Results

All proposed prototypes were extensively tested to ver-
ify their scalability and to compare their performance with
that of the pure query-based and summary-based protocols.
We settled two experimental testbeds: one aims to measure
the response times of client requests, hence the servers are
distributed over a geographic scenario; the second focuses
on cache hit rates and cooperation overheads, hence we can
use cache servers placed on the same network segment.

The difficulty of defining a “typical” workload model is
a well known issue, because studies on real traces show
great differences. For the experiments, we prefer to use
a synthetic workload generated by Web-Polygraph version
2.5 [13], that intends to capture a “realistic” Internet sce-
nario based on the second cache-off IRCACHE model [8].

The workload represents a set of heterogeneous users
with different interests. This characteristic, together with
the document popularity model, leads to a high spatial lo-
cality. Client requests also show some temporal locality,
so that only 30% of the workload is active at a given time.
Requests are referred to a mix of content types consisting
of images (65%), HTML documents (15%), binary data
(0.5%), others (19.5%). The workload model defines a set
of hot resources (1% of the working set) that receive about
10% of the requests. The heterogeneity of the user interests
is represented by the fact that only 50% of the requests is
taken from a “public” set of pages common to all clients,
while the remaining 50% is taken from a “private” set, dif-
ferent for each client. Each client is configured to visit more
than once only 80% of the URLs and the object cacheabil-
ity is 80%. HTML resources typically contain embedded
objects.

Every experiment was done twice and data measures
were collected only in the second run, so to emulate a steady
state scenario. It is worth to observe that an increment of the
number of cache servers increases the global cache capac-
ity, but also the size of the working set, because the number
of clients is incremented proportionally, so that five clients
are always connected to each cache server. Preliminary tests
were done to tune some parameters of Squid. For example,
for summary-based cooperation we find more convenient
to use a digest rebuild period of 60 seconds to reduce the
consistency miss effects that are due to frequent cache ob-
ject replacements (note that the Squid typically uses a much

higher value: the default is 60 minutes).

5.1. User response time

The first set of experiments refers to a geographic testbed
consisting of two clusters of five nodes each, connected
through some links and a geographical backbone. Ten net-
work hops existed between the clusters. We also installed
one Web server in each location. For these experiments,
we used the response time as the performance metric. The
experiments were carried out for two network conditions:
the first test was executed on Sunday, with little other net-
work traffic, while the second test was done in conditions
of heavy network load during a working day. The observed
mean round-trip time was 50 ms and 300 ms, in the case of
light and heavy traffic, respectively.

Figure 3 shows the cumulative probability of the re-
sponse times of all requests. In particular, Figure 3(a)
and 3(b) refer to the light and heavy network traffic, respec-
tively.

It is important to note that there is a big difference be-
tween client requests resulting in a hit (served usually in
very short time) and requests occurring in a global miss
(that usually experience a much higher latency), as the
Bernoullian shape of the response time curves suggest.
Higher hit rate means that higher percentages of requests
can be served in a short time. Indeed, Figure 3(a) the
ICP curve is the highest at the beginning, but it is sur-
passed by that of Query-Summary (around 1.5 seconds), by
SummaryMaster-Query (after 2 seconds) and becomes the
worst (after 4 seconds). These results mean that ICP has the
lowest response times for hit documents, but poorest results
in case of global misses, because it has to wait for the re-
sponse from the slowest peer or the time-out expiry. These
effects become even more evident in other not reported ex-
periments obtained for a workload model characterized by
scarce spatial locality and consequent lower hit rates.

From Figure 3(a), it is interesting to note the hints of con-
gestion in the Summary-Query response time: the percent-
age of requests served within 1 second is 69% for Query-
Summary, 65% for SummaryMaster-Query but only 59%
for Summary-Query. This bad performance is due to the
cluster masters that become the system bottlenecks, as it
typically occurs for the centralized component of any dis-
tributed system. Both alternative architectures proposed
in this paper can effectively avoid this problem. Query-
Summary achieves lower response times than those of
Summary-Query, even if its object hit rate tends to be the
worst, as shown in the next section.

The conclusions on response times can be better appre-
ciated by evaluating the 90-percentile of the request service
time instead than looking at the curves that seem so close.
In the case of light load, the 90-percentile for ICP is 3.7

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Response time [ms]

ICP
Summary-Query

SummaryMaster-Query
Query-Summary

Cache Digests

(a) Light network traffic

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000

C
um

ul
at

iv
e

pr
ob

ab
ili

ty

Response time [ms]

ICP
Summary-Query

SummaryMaster-Query
Query-Summary

Cache Digests

(b) Heavy network traffic

Figure 3. System Response Time

seconds (the highest value), while for Query-Summary it
is 3.2 seconds and for SummaryMaster-Query it is 3.6 sec-
onds. Cache Digests, because of its low hit rate tends to be
slower in the first part of the curve, but the 90-percentile of
its response time (3.6 seconds) is similar to that of the other
cooperation protocols:.

As expected, in the case of heavier traffic (Figure 3(b)),
the overall performance is reduced because congestion can
occur in many places of the distributed system. The per-
centage of client requests serviced within 100 ms (hit docu-
ments) is reduced from 66%-56% to 59%-47%, depending
on the cooperation model used. The cache hit rates are af-
fected by similar reductions.

The 90-percentile of the user response time augments:
ICP shows once again poor performance (6.2 seconds), far
higher than that of the best policy that is SummaryMaster-
Query remaining below 4.5 seconds. Cache Digests is the
worst cooperation approach in terms of 90-percentile (7.3
seconds) when the network is congested. The motivation is
that its lower cache hit rate augments the necessity of using
crowded links to contact the Web servers.

Looking at the 90-percentile of the response time, we can
see that Query-Summary performance is worse than that of
SummaryMaster-Query (5.6 vs. 4.4 seconds), which is the
best performing protocol with this network condition. This
can be explained by considering that in Query-Summary
even the 1-st tier lookup process tends to find hits outside
the physical clusters. Hence, the retrieval process is poten-
tially more expensive, especially when the network is over-
loaded.

As a concluding remark, it is interesting to observe
that in both cases of light and heavy network load, hy-

brid cooperation protocols tends to perform better than tra-
ditional mechanisms based on pure cooperation, because
they can combine the best characteristics of both query- and
summary-based protocols.

5.2. Cache hit rates and overheads

The second set of experiments aims at comparing hit
rate and cooperation overhead of the various protocols. We
choose not to perform our experiments using Summary-
Query, because it is similar to SummaryMaster-Query and
because from the previous section we found that it does not
achieve acceptable user response times.

Table 1 reports the results of cache hit rate and coop-
eration overhead: the first three columns show the cache
hit rates (local, first-tier and global); the last four columns
report the traffic overhead due to cooperation, that is indi-
cated as additional number of bytes that must be exchanged
for each client request.

We have already observed that increasing the number of
cache servers leads to an increment of the working set size
and a consequent reduction of the percentage of documents
that can be cached in each node. For example, in our exper-
iments these percentages decrease from 7.5% to 2% of the
working set when the cooperating nodes pass from 8 to 30.

It is interesting to note that as the number of peers in-
creases the local cache hit rate is reduced, as the No Coop-
eration case shows. This effect is not much evident because
of the high spatial locality of our workload. A different set
of experiments performed with a different workload shows
a significative drop in local hit rate (from 40% to 15%) as
the number of peer increases. Another noteworthy effect is

Table 1. Cache hit rates (HR) and overheads
Intra-Clust Inter-Clust Total Relative

Number Local First-tier Global Overhead Overhead Overhead Overhead
of Nodes HR HR HR per request per request per request per node

[bytes

req.

] [bytes

req.

] [bytes

req.

] [bytes

req.

]

ICP
8 57.22% 69.46% 532.72 66.59

15 52.16% n/a 68.24% n/a n/a 1238.13 82.54
30 45.12% 67.62% 2977.00 99.23

SummaryMaster-Query
8 48.24% 55.40% 62.56% 70.44 82.84 153.28 19.16

15 40.77% 50.53% 63.62% 65.54 95.09 160.64 10.71
30 31.65% 55.12% 64.06% 88.37 192.83 281.20 9.37

Query-Summary
8 55.01% 57.60% 63.84% 332.15 7.14 339.29 42.41

15 39.81% 43.82% 52.55% 317.66 10.88 328.54 21.90
30 35.80% 44.11% 54.38% 427.40 24.46 451.86 15.06

Cache Digests
8 31.47% 40.25% 3.67 0.46

15 30.52% n/a 37.82% n/a n/a 5.11 0.34
30 29.14% 37.80% 5.48 0.18

No Cooperation
8 57.30% 57.30%

15 52.28% n/a 52.28% n/a n/a n/a n/a
30 45.45% 45.45%

the reduced local hit rate of cooperative protocols with re-
spect to the non cooperative approach. This is caused by the
interference of remote hits that reduces the access locality.
This effect is particularly evident when the percentage of
“private” client requests is high, as in our workload model.

ICP can compensate the reduction of the local hit rate
by means of the cooperation mechanism, while Cache Di-
gests is not so effective in dealing with the reduced hit rate:
capacity and consistency misses reduces the accuracy of
metadata exchanged, thus leading to a high amount of false
hits and misses. Both two-tier architectures can compensate
the reduction of the local hit rate by means of the coopera-
tion mechanism. However, the SummaryMaster-Query ap-
proach achieves higher scalability: as the number of peers
grows, the first-tier hit rate drops and the second-tier can
only partially compensate this decline (refer to columns 3
and 4 of Table 1). On the other hand, Query-Summary
seems to offer a greater hit rate, especially for higher num-
bers of nodes achieving an hit rate that is only 5% less than
ICP, the best performing protocol. It is useful to remark
that the chosen working set tends to overestimate the per-
formance of query-based protocols.

The most interesting differences between the various co-
operation approaches can be found in their capacity to dis-
tribute overheads due to cooperation. It is evident that
the high hit rate of ICP is very expensive. The over-
head approaches 3 Kbytes/request with our workload and
reaches 4.5 Kbytes/request in other non reported experi-
ments with a different workload. Those results are par-

ticularly impressive since the mean resource size is equal
to nearly 10 Kbytes. On the other hand, Cache Digests
is surprisingly effective in reducing cooperation overhead
because of its small amount of exchaged data. Both two-
tier schemes show a good scalability because their overhead
grows much slower than the number of nodes involved in
cooperation (as the last column of Table 1 shows). How-
ever, Query-Summary overhead is almost the double of the
SummaryMaster-Query overhead, as shown in column 7 of
Table 1. It is worth to observe that inter-cluster overhead
of Query-Summary is much lower because of effectiveness
of the summary-based cooperation scheme in reducing the
size of exchanged information. Hence, Query-Summary
can be very useful in systems where inter-cluster network
resources must be spared, for example when many peering
points are involved.

5.3. Summary of experiments

From the above experimental results we can observe
many interesting characteristics about cooperative Web
caching.

• ICP is very effective in locating hits, but the cooper-
ation overhead is prohibitively high when many peers
are involved.

• Cache Digests is less effective in locating hits, but it is
the most efficient cooperation scheme: its overhead is
two orders of magnitude lower than that of ICP.

• ICP is very fast in servicing document hits, but it is the
slowest scheme in the case of miss documents, hence
its performance results are highly sensitive to cache hit
rates.

• Two-tier protocols achieve intermediate hit rate and
cooperation overhead with respect to ICP and Cache
Digests, but the most stable results that seem less de-
pendent on various system characteristics. For exam-
ple, two-tier protocols guarantee the lowest user re-
sponse time in both cases of heavy and light network
traffic.

• In Summary-Query cooperation, the cluster masters
tend to become the system bottleneck much more of-
ten than expected and demonstrated by simulations in
[15]. In this paper, we avoid the risk of congestion
by the so called SummaryMaster-Query cooperation
scheme. However, this result leads to two conclusions
that can be applied to a wider context than that consid-
ered in this paper.

An under evaluation of CPU costs at the servers for
network operations is a big risk for many performance
study carried out through (too much) network-oriented
simulations.

This is also a clear message against schemes using cen-
tralized directories unless they are hosted on very pow-
erful machines.

• Query-Summary is more effective than
SummaryMaster-Query in using fairly the network
resources: Query-Summary uses Cache digests on
inter-cluster links thus reducing the load on the most
critical network resources, while SummaryMaster-
Query, on the same links, uses a more expensive
ICP-based lookup scheme.

6. Conclusions

This paper offers multiple contributions. We investigate
by means of a prototype the benefits in cache hit rate, co-
operation overhead and response time of a two-tier cooper-
ation previously studied only by means of simulations. An
under evaluation of CPU costs at the cache servers for net-
work operations caused some differences between the pre-
viously obtained simulation results and the experimental re-
sults [15].

We also propose two novel two-tier cooperation mech-
anisms that are implemented in Squid-based prototypes.
Our experiments show that the modified two-tier proto-
types offer higher hit rate with respect to Cache Digests and
lower cooperation overhead than ICP. The stability of the
response time of two-tier architectures can also be appreci-
ated in a geographic environment with heterogeneous links.

Moreover, for those protocols, the 90-percentile of their re-
sponse time is significatively lower than that of pure query-
and summary-based mechanisms, especially in the case of
heavy network traffic.

References

[1] Akamai. Akamai inc., 2002. – http://www.akamai.com.
[2] ATT. AT&T, 2002. – http://www.att.com.
[3] B. Bloom. Space/time trade-offs in hash coding with allow-

able errors. Communications of the ACM, 13:422–426, Jul.
1970.

[4] DigitalIsland. Digital island inc., 2002. –
http://www.digitalisland.com.

[5] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Sum-
mary cache: A scalable wide-area web cache sharing proto-
col. IEEE/ACM Transactions on Networking, 8(3):281–293,
2000.

[6] S. Gadde, J. Chase, and M. Rabinovich. A taste of crispy
squid. In Proc. of Workshop on Internet Server Performance
(WISP’98), 1998.

[7] S. Gadde, M. Rabinovich, and J. Chase. An approach to
building large internet caches. In Proc. Sixth Workshop on
Hot Topics in Operating Systems (HotOS-VI), May 1997.

[8] IRCache. Ircache project, 1995. – http://www.ircache.net.
[9] M. Rabinovich, J. Chase, and S. Gadde. Not all hits are cre-

ated equal: Cooperative proxy caching over a wide-area net-
work. In Proc. of Third International WWW Caching Work-
shop, Jun. 1998.

[10] M. Rabinovich and O. Spatscheck. Web Caching and Repli-
cation. Addison Wesley, 2002.

[11] P. Rodriguez, C. Spanner, and E. Biersack. Web caching
architectures: hierarchical and distributed caching. In Proc.
of Web Caching Workshop (WCW’99), 1999.

[12] A. Rousskov and D. Wessels. Cache digests. Computer Net-
works and ISDN Systems, 30(22-23), Nov. 1998.

[13] A. Russkov and D. Wessels. Web polygraph, 2000. –
http://www.web-polygraph.org.

[14] A. Santoro, B. Ciciani, M. Colajanni, and F. Quaglia. Two-
tier cooperation: A scalable protocol for web cache sharing.
In Proc. of IEEE International Symposium on Network Com-
puting and Applications, Oct 2001.

[15] A. Santoro, B. Ciciani, M. Colajanni, and F. Quaglia. Two-
tier cooperation: A scalable protocol for web cache sharing.
In Proc. of IEEE International Symposium on Network Com-
puting and Applications, Cambridge, MA, Feb. 2002.

[16] V. Valloppillil and K. Ross. Cache array routing protocol
v1.0, Feb. 1998.

[17] P. VINT. Ns2, 2002. – http://www.isi.edu/nsnam/ns/.
[18] P. Vixie and D. Wessels. Hyper Text Caching Protocol

(HTCP/0.0), Jan. 2000. RFC 2756.
[19] J. Wang. A survey of web caching schemes for the internet.

ACM Computer Communication Review, 29, Oct. 1999.
[20] D. Wessels. Web Caching. O’Reilly, 2001.
[21] D. Wessels. Squid Programmers Guide, 2002.
[22] D. Wessels and K. Claffy. Internet Cache Protocol (ICP),

version 2, Sep. 1997. RFC 2186.
[23] P. S. Yu and E. A. MacNair. Performance study of a col-

laborative method for hierarchical caching in proxy servers.
Computer Networks and ISDN Systems, pages 215–224, Apr.
1998.

http://www.akamai.com
http://www.att.com
http://www.digitalisland.com
http://www.ircache.net
http://www.web-polygraph.org
http://www.isi.edu/nsnam/ns/

	. Introduction
	. Related work
	. Two-tier Web caching architectures
	. Novel schemes for hybrid cooperation
	. Motivation
	. SummaryMaster-Query cooperation
	. Query-Summary cooperation

	. Experimental Results
	. User response time
	. Cache hit rates and overheads
	. Summary of experiments

	. Conclusions

