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Abstract

Modern distributed systems that have to avoid per-
formance degradation and system overload require sev-
eral runtime management decisions for load balanc-
ing and load sharing, overload and admission control,
job dispatching and request redirection. As the exter-
nal workload and the internal resource behavior of the
modern system is highly complex and variable, self-
adaptive techniques require a stable vision of the sys-
tem behavior. In this paper we propose a trend model
that guarantees a robust interpretation for load-aware
decision algorithms. Various experimental results in a
Web cluster demonstrate that the proposed models and
algorithms guarantee better stability of the load and a
reduction of the response time experienced by the users.

1 Introduction

The majority of modern applications are served by
distributed systems that must accommodate varying
demands for different types of processing within cer-
tain time constraints. Behind each user request there
are several runtime decision algorithms that are ori-
ented to load balancing and load sharing, overload and
admission control [I7, [T6], job dispatching and redirec-
tion even at a geographical scale [7]. These runtime
management decisions are taken on the basis of the
present and past knowledge of the state of the system
resources, that is becoming increasingly complex and
variable. Robust self-adaptive techniques seem to be
the inevitable answer to manage these critical services.
This paper addresses a fundamental issue that is at the
basis of any robust load-aware decision system that has
to satisfy scalability and availability requirements, and
has to avoid performance degradation and system over-
load: how to guarantee an adequate knowledge of the

behavior and state of the internal hardware/software
resources. The problem is that most runtime man-
agement algorithms consider just instantaneous or av-
erage values of the resource state coming from mea-
surements (e.g., CPU utilization, disk and network
throughput, memory occupancy). In other contexts
[¥], these resource measures are valid sources to de-
cide where the system is, where the system is going,
whether is it necessary or not to activate some runtime
management processes. The large majority of these
systems are based on some functions that work directly
on resource measures [I7 [2, [[8]. Other papers [12, [0
have shown the utility of the stochastic models based
on moving-average and on linear regression to give a
more reliable load representation. Moreover, also some
low-pass filtering of network throughput samples have
been proposed in [19]. We think that the problem
with these approaches is that most modern systems
are characterized by complex hardware/software archi-
tectures and by highly variable workloads that cause
high instability of system resource measures. The con-
text of Internet-based system is characterized by dis-
tributed systems that are subject to typically non sta-
tionary loads, heavy-tailed distributions [3] and flash
crowds [I4], extreme variability and tendency to be-
come obsolete rather quickly [T0]. Hence, simple re-
source measures are of little help to distinguish over-
load conditions from transient peaks, to understand
load trends and to anticipate future conditions, that
are of utmost importance for taking correct runtime
decisions and guaranteeing a robust self-adaptive sys-
tem. In other fields, different studies [4, [[T] have faced
similar problems following the basic principles of Quali-
tative Modeling based on trend, aiming to represent the
state and behavior of a physical system retaining only
its mainly interesting features, without dealing with
punctual and comprehensive overviews of it. Despite
that, not only these previous works are all applied to
different contexts and do not develop stochastic mod-



1 ; T T T T 35000
— Punctual view

— Punctual view

30000 -

25000 -

20000 ~

CPU Utilization
Disk Throughput

15000 ~

10000

5000

0

— Average view

CPU Utilization

100 200 300 400 500 600 700 100 200 300
Lag

(a) Instantaneous values of the CPU
utilization

400 500 600 700 100 200 300 400 500 600 700

(b) Instantaneous values of the Disk
throughput

Lag

(c) Average values of the CPU
utilization

Figure 1. State representations of some system resources.

els for trend definition, but they even handle the prob-
lem only in qualitative terms (for example, whether
the derivative is increasing, decreasing or oscillating),
without integrating them with quantitative measures.

We propose a mathematical model for the runtime
evaluation of the behavioral trend of the internal re-
sources load state, from a qualitative and also quanti-
tative point of view. In this paper, we apply the pro-
posed self-adaptive behavioral trend models to a clas-
sical request dispatching problem in the context of a
locally distributed multi-tier Web system. Our exper-
imental results show that load-aware dispatching deci-
sions based on trend guarantee better stability of the
load among the servers, and a reduction of the response
time.

The paper is organized as following. Section [ in-
troduces the problem definition. Section Bl presents the
self-adaptive qualitative and quantitative trend mod-
els. Section Ml discusses the experimental results. Sec-
tion B concludes the paper with some final remarks.

2 Problem definition

The state of the internal system resources for
load-aware decision systems is traditionally obtained
through a periodic collection of measures from server
monitors. Moreover, the observed measures of the in-
ternal resources are characterized by some statistical
properties, such as noise, short time dependency [1] and
non stationary effects, that make the observed values
completely unreliable to characterize the system state
with respect to the resource capacities. To give a qual-
itative motivation of the difficulties in capturing any
clear message from a sequence of resource measures, in
Figures[M we report an example related to the back-end
server of a multi-tier Web system subject to a realistic
non-stationary workload. In these figures, we consider
different metrics and representations:

e two resource metricss CPU utilization (Fig-
ure [[(a)), and disk throughput as blocks/second

(Figure [(b));

e two load representations: instantaneous values
(Figures [(a) and [(b)) and average values (Fig-
ures [(c)).

Figures [[(a) and [(b) share the common trait that
the view of a resource that is obtained from system
monitors is extremely variable. On the other hand,
Figure [(c) shows that a simple average measure re-
duces the variability of the resource state, but at the
price of an unacceptable delay in the state representa-
tion [I]. The variability of the instantaneous view and
the delay of the average view are high to the extent that
any load-aware decision based on these values may be
completely wrong. For example, for a decision system
that should work on the CPU utilization measures sim-
ilar to those in Figure [[(a) it would be impossible to
judge when a server is under- or over-loaded. On the
other hand, an average view of the resource measures
mitigates the oscillations, but a self-adaptive algorithm
would be significantly delayed for taking any correct
decision.

In general, the traditional models for load represen-
tation are able to capture the information about the
actual load state of a resource but anyone is able to
adapt the load representation to the sudden changes
of the resource behavior. Let us consider the i-th load
state, S;. A traditional load representation model de-
scribes S; through a linear combination of the n past

data:
n—1 n—1
Si = Z qjTi—y; Z q =1 (1)
j=0 j=0
where ;,...,2;_(,_1) are the last n monitored data

weighted by the g; coefficients. Many different load
representation models based on an instantaneous view



exist but in our paper we consider models based on the
instantaneous view of the monitored measures and on
the moving average of the last n data. In particular,
if we consider the model based on the instantaneous
measures, the load state S; is equal to:

Si =T (2)

while, using the model based on the moving average,
S; is equal to:

2
(14+n)

Si=vyzi+ (1 —=79)Si—1; 7= (3)

where 7 is the smoothing factor [T5].

In literature there are many popular stochastic mod-
els that are able to reduce the limits of the considered
models, such as auto-regressive integrated moving av-
erage models (ARIMA) and auto-regressive fraction-
ally integrated moving average (ARFIMA) models [T2].
These models are able to reproduce precisely the be-
havior of the data set, but at the price of an excessive
computational cost and frequent updates of their pa-
rameters that are inadequate to be used at runtime in
a context characterized by high variability. Hence, to
support load-aware decision algorithms it is important
to define a new load representation that is able to limit
the drawbacks of the existing models in the specific
context of Internet-based distributed systems.

3 Trend models

A robust load representation for supporting the
load-aware decision algorithms should combine the lin-
ear model simplicity, the AR and ARIMA qualities of
reproducing the stochastic pattern of the data set and
the simple average model ability of smoothing some
noise components.

Our idea is that a valid load representation model in
a non stationary context should not consider just the
actual values computed through the traditional model,
but it should also be able to estimate the behavioral
trend of the resource load. The behavioral trend gives
a fundamental self-adaptive geometric interpretation of
the load behavior that adapts itself to the non station-
arity of the load and that can be utilized to evaluate
whether the load state of a resource is increasing, de-
creasing, oscillating or stabilizing. Consequently, it is
possible to generate a new load representation based
on this geometric interpretation.

We define the behavioral trend as a function
T(X,, m) that takes into account :

e the n data set values: X,, = (:Ci,(n,l), Ces T);

e the m values of the observed data set X,, used for
the behavioral trend evaluation, m < n.

and gives a geometric interpretation of the selected
data. Hence, we can write:

T(X,,m) = by (4)

where by € B = {b1,...,bx} denotes the behavior
trend associated to the m selected data. The behavior
b, may have a qualitative or a quantitative representa-
tion.

3.1 Qualitative trend model

The qualitative trend associates a sequence of m val-
ues to a specific pattern. We consider at least m = 2
selected points, x; and x;_ EXE where - is the se-
lection frequency of the points in the data set X,,.
These values allow us to obtain three trend patterns

Bin=2 = {increasing, decreasing, stable}, that is,

e increasing is the trend that is associated to an
increment between the last two selected values,
XT; > Ti—|z |3

e stable represents the trend characterized by x; =
Lie| 215

e decreasing is associated to consecutive values that
have a descending tendency, z; < z;_|n;
m

In general, if we consider m selected points, we are
able to define 3™~ ! different trend patterns. In this
paper for m > 2 we consider five classes: B,,~2 =
{increasing, unstable+, stable, unstable—, decreasing},
because preliminary evaluations demonstrated that a
higher number of classes is useless. The considered
five classes are defined as following:

e increasing characterizes a sequence of m — 1 in-
creasing behavioral trends, m;_(j_1) 2| > T;_jn|
™ ™

for 1 <j<m;

o unstable+ describes a sequence of oscillating be-
havioral trends that has the last one in an increas-
ing mode, x; > Ti—|n|;

e stable represents a stable condition, z;_(;_1)
Ti—j| | for 1 <j<m;

|
™

e unstable- represents a sequence of oscillating be-
havioral trends where the last one is in a decreas-
ing mode, x; < Ti—|n|;

e decreasing characterizes a sequence of m — 1 in-
creasing behavioral trends, =;_(j_1)|2| < T;_jz|
for 1 <j<m;



Using only the qualitative trend to represent the ¢-th
load state of a resource, we have:

S; = by (5)
3.2 Quantitative trend model

It is possible to pass from a qualitative representa-
tion of the behavioral trend to a quantitative view by
evaluating the gradient of the segment that is obtained
when m = 2 or by some linear combinations of the
past values when m > 2. Let us consider this latter
instance.

Between every pair of the m consecutive selected
points in the vector X,, we compute the trend coeffi-
cient o, with 0 < j < m — 1, of the line that divides
the consecutive points Tijn| and Tio(j41)| |-

Ti—j| 2| —xi—(j+1)|%|; 0<j<m—1 i<m

(6)

In order to quantify the degree of variation of the past

data values, we consider a weighted linear regression of
the m trend coefficients:

m—1 m—1
a; = Z pjog; Z pj =1 (7)
§=0 j=0

where ap, . .., @(,;,_1) are the trend coefficients that are
weighted by the p; coefficients. This is the most gen-
eral formula that can pass from not weighted p; values
to weighted coefficients obtained through some decay
distributions. In this paper, we consider a geometric
distribution of the weights p that gives more impor-
tance to the most recent trend coefficients. The abso-
lute value of the j-th trend coefficient | «; | identifies
the intensity of the variation between two consecutive
measures ;|| and Tio(j41)| |- The sign of a; de-
notes the direction of the variation: a plus represents
an increase between the Ti_jz| and Tio(j41)| 2| val-
ues, while a minus denotes a decrease. A load repre-
sentation of the i-th load state S; based on only the
quantitative trend model has the following expression:

S; = a (8)

It is possible to extend the quantitative behavioral
trend model with the information about the actual load
state shown in Equation[ll In this self-adaptive model,
that we name quantitative trend with load representa-
tion model, the i-th load state, .S;, is the result of a
linear combination between the quantitative trend, &;,
and the load representation value, that is:

o = =
|

n—1 n—1
S; :ai‘i‘z%’xi—j; qu =1 (9)
=0 =0

4 Experimental results

The architecture that we use as a testbed for the
experiments is a typical multi-tier Web architecture
that is based on the implementation presented in [6];
the application servers are deployed through the Tom-
cat servlet container, and are connected to MySQL
database servers. In our experiments, we exercise the
system through realistic traces; each experiment lasts
one hour. To manage large numbers of requests (possi-
bly hotspots) among these locally distributed systems
the front-end switch requires smart policies that must
take fast decisions at runtime. We start from a popular
load balancer where dispatching decisions are based on
the weighted round robin (WRR) policy [13] where the
weights are computed on the bases of the actual load
representation. We then apply the trend models of
Section Bl and consider that the weights are computed
by means of different self-adaptive trend-aware rep-
resentations: qualitative trend models when only the
qualitative behavioral trend is used, quantitative trend
models that consider only the quantitative behavioral
trend and the quantitative trend model with load repre-
sentation models that combine the quantitative trend
with the moving average model as load representation.
In the presented experiments the trend-aware models
consider three past points that is, m = 3. Moreover,
we consider two different traditional models: the first
one represents the load state using directly the instan-
taneous measures, x;; and the second is based on the
moving average of the last n = 10 data.

We evaluate two important performance factors of
dispatching: the impact on the response time by con-
sidering the 90-percentile of the response time for an
entire Web request, and the level of load balancing
among the servers through the Load Balance Metric [
(LBM). Let us define the load state of the server j
at the i-th observation of the observation period p as
load; ;, and peak_load; as the highest load in the same
observation. The LBM is defined as:

> peak_load;

1<i<p

(> > load;;)/N

1<i<pl<j<N

LBM =

(10)

where N is the total number of servers. Note that the
value of the LBM can range from 1 to the number of
servers (N = 3 in the considered system). Smaller
values of the LBM indicate a better load balance.

The qualitative effects of the different load repre-
sentation models into the dispatching algorithms based
on the CPU utilization of the three servers can be ap-
preciated from the Figures The servers are highly
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Figure 2. Load balancing in the distributed system.

Table 1. Evaluation of the models.

Support for load-aware | LBM 90-perc.
decision algorithms response time
Measure-aware model 2.15 501ms
Moving average model 1.85 450ms

Qualitative trend model 1.40 417ms
Quantitative trend model 1.41 410ms
Quantitative trend model
with load representation 1.29 370ms

unbalanced, when the dispatching uses the load repre-
sentation based on moving average (Figure @ (a)). On
the other hand, the self-adaptive representations based
on the behavioral trend bring to a more balanced sys-
tem, as it is highlighted by the close curves of the CPU
utilizations of the three DB servers (Figure B (b-d)).
This result is important because lasts during the entire
experiment.

In Table [M we report a quantitative summary of the

main performance metrics for the considered models.
From this table, we can see that the dispatcher based
on the quantitative trend model with load representa-
tion achieves the best load balance in terms of LBM
and the best performance in terms of 90-percentile
of the response time. The difference between the
LBM values increases considerably when the dispatch-
ing scheme is based on traditional models or when it
is based on the quantitative trend model with load rep-
resentation model. Shifting from the model based on
instantaneous measures to the qualitative trend model,
the LBM difference is about 29% (17% if the com-
parison starts with the model based on moving aver-
age), while if we shift from the measure-aware model
to the quantitative trend model with load representation
model, the increase in LBM values is more than 40%
(30% if the comparison starts with the model based
on moving average). The 90-percentile of the response
time passes from 501ms, when the load-aware decisions
are based on the model based on instantaneous val-
ues, to 370ms, when the load-aware decision algorithm



uses the quantitative trend model with load representa-
tion model. This reduction of the 90-percentile of the
response time confirms the ability of the qualitative
trend to manage a complex distributed system even in
the presence of a severe non stationary workload.

5 Conclusion

The load-aware decision systems are expected to
guaranty robust results even under different workload
conditions even critical in terms of variability and
peaks of requests. These external characteristics to-
gether with the increasing complexity of the internal
architecture of distributed systems make management
decisions really difficult especially for self-adaptive sys-
tems. This paper represents a first contribution in the
direction of investigating a new class of representations
of the resource states that are based on a trend evalu-
ation of the load. We demonstrate that the proposed
self-adaptive trend-aware models are able to improve
the traditional load-aware decision systems, such as a
front-end dispatcher of a Web cluster.
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